(For a full list see below)
1.
Hu, L. S. et al. Integrated molecular and multiparametric MRI mapping of high-grade glioma identifies regional biologic signatures. Nat Commun 14, 6066 (2023). Cite
1.
Besharat, Z. M. et al. Circulating miR-26b-5p and miR-451a as diagnostic biomarkers in medullary thyroid carcinoma patients. J Endocrinol Invest (2023) http://doi.org/10.1007/s40618-023-02115-2. Cite
1.
Rosaria Noviello, T. M. et al. Guadecitabine plus ipilimumab in unresectable melanoma: five-year follow-up and correlation with integrated, multiomic analysis in the NIBIT-M4 trial. http://medrxiv.org/lookup/doi/10.1101/2023.02.09.23285227 (2023) doi:10.1101/2023.02.09.23285227. Cite Download
1.
Migliozzi, S. et al. Integrative multi-omics networks identify PKCδ and DNA-PK as master kinases of glioblastoma subtypes and guide targeted cancer therapy. Nat Cancer (2023) http://doi.org/10.1038/s43018-022-00510-x. Cite Download
1.
Feng, S. et al. Decomprolute: A benchmarking platform designed for multiomics-based tumor deconvolution. http://biorxiv.org/lookup/doi/10.1101/2023.01.05.522902 (2023) doi:10.1101/2023.01.05.522902. Cite Download
1.
Wang, J. M. et al. Deep learning integrates histopathology and proteogenomics at a pan-cancer level. Cell Reports Medicine 101173 (2023) http://doi.org/10.1016/j.xcrm.2023.101173. Cite Download
1.
Liang, W.-W. et al. Integrative multi-omic cancer profiling reveals DNA methylation patterns associated with therapeutic vulnerability and cell-of-origin. Cancer Cell S1535610823002532 (2023) http://doi.org/10.1016/j.ccell.2023.07.013. Cite
1.
Di Giacomo, A. M. et al. Immunotherapy for brain metastases and primary brain tumors. European Journal of Cancer 179, 113–120 (2023). Cite
1.
Mason, M. et al. A Community Challenge to Predict Clinical Outcomes After Immune Checkpoint Blockade in Non-Small Cell Lung Cancer. http://biorxiv.org/lookup/doi/10.1101/2022.12.05.518667 (2022) doi:10.1101/2022.12.05.518667. Cite Download
1.
Anichini, A. et al. Landscape of immune-related signatures induced by targeting of different epigenetic regulators in melanoma: implications for immunotherapy. Journal of Experimental & Clinical Cancer Research 41, 325 (2022). Cite
1.
White, B. S. et al. Community assessment of methods to deconvolve cellular composition from bulk gene expression. http://biorxiv.org/lookup/doi/10.1101/2022.06.03.494221 (2022) doi:10.1101/2022.06.03.494221. Cite Download
1.
Anichini, A. et al. Landscape of immune-related signatures induced by targeting of different epigenetic regulators in melanoma: implications for immunotherapy. http://biorxiv.org/lookup/doi/10.1101/2022.04.13.488140 (2022) doi:10.1101/2022.04.13.488140. Cite Download
1.
Chan, S. et al. An anti-PD-1–GITR-L bispecific agonist induces GITR clustering-mediated T cell activation for cancer immunotherapy. Nat Cancer (2022) http://doi.org/10.1038/s43018-022-00334-9. Cite Download
1.
Sayaman, R. W. et al. Analytic pipelines to assess the relationship between immune response and germline genetics in human tumors. STAR Protocols 3, 101809 (2022). Cite
1.
D’Agostino, Y. et al. Loss of circadian rhythmicity in bdnf knock-out zebrafish larvae. iScience 104054 (2022) http://doi.org/10.1016/j.isci.2022.104054. Cite Download
1.
Saad, M. et al. Genetic predisposition to cancer across people of different ancestries in Qatar: a population-based, cohort study. The Lancet Oncology S147020452100752X (2022) http://doi.org/10.1016/S1470-2045(21)00752-X. Cite
1.
McLaughlin, R. T. et al. Attentive deep learning-based tumor-only somatic mutation classifier achieves high accuracy agnostic of tissue type and capture kit. http://biorxiv.org/lookup/doi/10.1101/2021.12.07.471513 (2021) doi:10.1101/2021.12.07.471513. Cite Download
1.
De Falco, A., Caruso, F. P., Su, X. D., Iavarone, A. & Ceccarelli, M. A fast variational algorithm to detect the clonal copy number substructure of tumors from single-cell data. http://biorxiv.org/lookup/doi/10.1101/2021.11.20.469390 (2021) doi:10.1101/2021.11.20.469390. Cite Download
1.
Petralia, F. et al. BayesDeBulk: A Flexible Bayesian Algorithm for the Deconvolution of Bulk Tumor Data. http://biorxiv.org/lookup/doi/10.1101/2021.06.25.449763 (2021) doi:10.1101/2021.06.25.449763. Cite Download
1.
Mall, R. et al. Network-based identification of key master regulators associated with an immune-silent cancer phenotype. Briefings in Bioinformatics bbab168 (2021) http://doi.org/10.1093/bib/bbab168. Cite Download
1.
Paladino, A., D’Angelo, F., Noviello, T. M. R., Iavarone, A. & Ceccarelli, M. Structural Model for Recruitment of RIT1 to the LZTR1 E3 Ligase: Evidences from an Integrated Computational Approach. J. Chem. Inf. Model. acs.jcim.1c00296 (2021) http://doi.org/10.1021/acs.jcim.1c00296. Cite Download
1.
Petrillo, F. et al. Dysregulation of Principal Cell miRNAs Facilitates Epigenetic Regulation of AQP2 and Results in Nephrogenic Diabetes Insipidus. J Am Soc Nephrol (2021) http://doi.org/10.1681/ASN.2020010031. Cite
1.
Di Munno, C. et al. Adaptive Thermogenesis Driving Catch-Up Fat Is Associated With Increased Muscle Type 3 and Decreased Hepatic Type 1 Iodothyronine Deiodinase Activities: A Functional and Proteomic Study. Front. Endocrinol. 12, 631176 (2021). Cite
1.
Litchfield, K. et al. Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. Cell 184, 596-614.e14 (2021). Cite
1.
Garofano, L. et al. Pathway-based classification of glioblastoma uncovers a mitochondrial subtype with therapeutic vulnerabilities. Nat Cancer (2021) http://doi.org/10.1038/s43018-020-00159-4. Cite Download
1.
Wang, L.-B. et al. Proteogenomic and metabolomic characterization of human glioblastoma. Cancer Cell (2021) http://doi.org/10.1016/j.ccell.2021.01.006. Cite Download