(For a full list see below)
1.
Chan, S. et al. An anti-PD-1–GITR-L bispecific agonist induces GITR clustering-mediated T cell activation for cancer immunotherapy. Nat Cancer (2022) http://doi.org/10.1038/s43018-022-00334-9. Cite Download
1.
D’Agostino, Y. et al. Loss of circadian rhythmicity in bdnf knock-out zebrafish larvae. iScience 104054 (2022) http://doi.org/10.1016/j.isci.2022.104054. Cite Download
1.
Saad, M. et al. Genetic predisposition to cancer across people of different ancestries in Qatar: a population-based, cohort study. The Lancet Oncology S147020452100752X (2022) http://doi.org/10.1016/S1470-2045(21)00752-X. Cite
1.
McLaughlin, R. T. et al. Attentive deep learning-based tumor-only somatic mutation classifier achieves high accuracy agnostic of tissue type and capture kit. http://biorxiv.org/lookup/doi/10.1101/2021.12.07.471513 (2021) doi:10.1101/2021.12.07.471513. Cite Download
1.
De Falco, A., Caruso, F. P., Su, X. D., Iavarone, A. & Ceccarelli, M. A fast variational algorithm to detect the clonal copy number substructure of tumors from single-cell data. http://biorxiv.org/lookup/doi/10.1101/2021.11.20.469390 (2021) doi:10.1101/2021.11.20.469390. Cite Download
1.
Petralia, F. et al. BayesDeBulk: A Flexible Bayesian Algorithm for the Deconvolution of Bulk Tumor Data. http://biorxiv.org/lookup/doi/10.1101/2021.06.25.449763 (2021) doi:10.1101/2021.06.25.449763. Cite Download
1.
Mall, R. et al. Network-based identification of key master regulators associated with an immune-silent cancer phenotype. Briefings in Bioinformatics bbab168 (2021) http://doi.org/10.1093/bib/bbab168. Cite Download
1.
Paladino, A., D’Angelo, F., Noviello, T. M. R., Iavarone, A. & Ceccarelli, M. Structural Model for Recruitment of RIT1 to the LZTR1 E3 Ligase: Evidences from an Integrated Computational Approach. J. Chem. Inf. Model. acs.jcim.1c00296 (2021) http://doi.org/10.1021/acs.jcim.1c00296. Cite Download
1.
Petrillo, F. et al. Dysregulation of Principal Cell miRNAs Facilitates Epigenetic Regulation of AQP2 and Results in Nephrogenic Diabetes Insipidus. J Am Soc Nephrol (2021) http://doi.org/10.1681/ASN.2020010031. Cite
1.
Di Munno, C. et al. Adaptive Thermogenesis Driving Catch-Up Fat Is Associated With Increased Muscle Type 3 and Decreased Hepatic Type 1 Iodothyronine Deiodinase Activities: A Functional and Proteomic Study. Front. Endocrinol. 12, 631176 (2021). Cite
1.
Garofano, L. et al. Pathway-based classification of glioblastoma uncovers a mitochondrial subtype with therapeutic vulnerabilities. Nat Cancer (2021) http://doi.org/10.1038/s43018-020-00159-4. Cite Download
1.
Wang, L.-B. et al. Proteogenomic and metabolomic characterization of human glioblastoma. Cancer Cell (2021) http://doi.org/10.1016/j.ccell.2021.01.006. Cite Download
1.
de Falco, A. et al. Adaptive One-Class gaussian processes allow accurate prioritization of oncology drug targets. Bioinformatics btaa968 (2020) http://doi.org/10.1093/bioinformatics/btaa968. Cite Download
1.
Caruso, F. P., Scala, Giovanni, Cerulo, L. & Ceccarelli, M. A review of COVID-19 biomarkers and drug targets: resources and tools. Briefings in Bioinformatics (2020) http://doi.org/10.1093/bib/bbaa328. Cite Download
1.
Noviello, T. M. R., Ceccarelli, M. & Cerulo, L. Deep learning predicts non-coding RNA functions from only raw sequence data. http://biorxiv.org/lookup/doi/10.1101/2020.05.27.118778 (2020) doi:10.1101/2020.05.27.118778. Cite Download
1.
Sayaman, R. W. et al. Germline genetic contribution to the immune landscape of cancer. http://biorxiv.org/lookup/doi/10.1101/2020.01.30.926527 (2020) doi:10.1101/2020.01.30.926527. Cite Download
1.
Caruso, F. P. et al. A MAP of tumor-host interactions in glioma at single cell resolution. http://biorxiv.org/lookup/doi/10.1101/827758 (2019) doi:10.1101/827758. Cite Download
1.
Di Iorio, B. R. et al. Treatment of metabolic acidosis with sodium bicarbonate delays progression of chronic kidney disease: the UBI Study. J. Nephrol. (2019) http://doi.org/10.1007/s40620-019-00656-5. Cite Download
1.
Roelands, J. et al. Genomic landscape of tumor-host interactions with differential prognostic and predictive connotations. http://biorxiv.org/lookup/doi/10.1101/546069 (2019) doi:10.1101/546069. Cite Download
1.
Bertucci, F. et al. The immunologic constant of rejection classification refines the prognostic value of conventional prognostic signatures in breast cancer. British Journal of Cancer (2018) http://doi.org/10.1038/s41416-018-0309-1. Cite Download
1.
Ferreira, L. A. M. et al. Circulating microRNAs expression profile in newly diagnosed and imatinib treated chronic phase – chronic myeloid leukemia. Leukemia & Lymphoma 1–7 (2018) http://doi.org/10.1080/10428194.2018.1499905. Cite
1.
Silvestri, E. et al. 3,5-Diiodo-L-Thyronine Affects Structural and Metabolic Features of Skeletal Muscle Mitochondria in High-Fat-Diet Fed Rats Producing a Co-adaptation to the Glycolytic Fiber Phenotype. Frontiers in Physiology 9, (2018). Cite