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Abstract

Neurofibromatosis type 1 (NF1) is a common tumor predisposition syndrome in which glioma is 

one of the prevalent tumors. Gliomagenesis in NF1 results in a heterogeneous spectrum of low- to 

high-grade neoplasms occurring during the entire lifespan of patients. The pattern of genetic and 

epigenetic alterations of glioma that develops in NF1 patients and the similarities with sporadic 

glioma remain unknown. Here, we present the molecular landscape of low- and high-grade 

gliomas in patients affected by NF1 (NF1-glioma). We found that the predisposing germline 

mutation of the NF1 gene was frequently converted to homozygosity and the somatic mutational 

load of NF1-glioma was influenced by age and grade. High-grade tumors harbored genetic 

alterations of TP53 and CDKN2A, frequent mutations of ATRX associated with Alternative 
Lengthening of Telomere, and were enriched in genetic alterations of transcription/chromatin 

regulation and PI3 kinase pathways. Low-grade tumors exhibited fewer mutations that were over-

represented in genes of the MAP kinase pathway. Approximately 50% of low-grade NF1-gliomas 

displayed an immune signature, T lymphocyte infiltrates, and increased neo-antigen load. DNA 

methylation assigned NF1-glioma to LGm6, a poorly defined Isocitrate Dehydrogenase 1 wild-

type subgroup enriched with ATRX mutations. Thus, the profiling of NF1-glioma defined a 

distinct landscape that recapitulates a subset of sporadic tumors.

Reporting Summary.
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Further information on research design is available in the Nature Research Reporting Summary 

linked to this article.

NF1 is a common autosomal dominant disorder that results in the most frequent tumor 

predisposition syndrome. NF1 affects an estimated 100,000 people in the USA (1 in 3,000 

individuals)1,2. Individuals with NF1 suffer from a wide range of clinical manifestations 

caused by the increased risk of malignant and non-malignant conditions compared with the 

general population3.

NF1 is caused by germline mutations in the NF1 tumor suppressor gene, which encodes a 

GTPase-activating protein called neurofibromin that functions as a negative regulator of the 

RAS oncoprotein. Neurofibromin regulates cell growth and survival through several 

downstream signaling effectors by accelerating the conversion of active GTP-bound RAS to 

its inactive GDP-bound form. Thus, loss of neurofibromin expression, as seen in tumors 

associated with NF1, is predicted to lead to increased cell growth and survival through 

hyperactivation of RAS4.

Recent genome-wide sequencing studies have revealed that sporadic malignancies including 

sporadic gliomas (both lower grade glioma and glioblastoma, GBM) have haploinsufficient 

or nullizygous loss of NF1, indicating that NF1 functions as a somatic tumor suppressor in 

the general population5.

NF1 patients are predisposed to develop brain tumors, and gliomas are seen in 15–20% of 

individuals with NF16,7. Approximately 15% of children with NF1 develop optic pathway, 

low-grade gliomas8. NF1 patients are also prone to developing non-optic gliomas, more 

frequently later in life, which manifest with a spectrum of histological subtypes including 

high-grade gliomas9. Although the predisposition to develop central nervous system tumors 

in patients with NF1 is well recognized, the molecular features of gliomas occurring in 

patients with NF1 have remained obscure, preventing development and application of novel 

therapeutic approaches. It is also unclear whether NF1-gliomas recapitulate the molecular 

profiles of the subtypes recently identified in sporadic gliomas10.

Here, we report a comprehensive analysis of NF1-gliomas. We define distinct features of 

low- and high-grade tumors in children and adults and describe a comparative evaluation of 

genomic features in syndromic NF1 and sporadic gliomas.

Results

Overview of cohort characteristics.

The tumor cohort analyzed in this study is composed of 59 glioma samples from 56 patients 

(33 females and 23 males) who met the clinical criteria of NF111. Tumor samples were from 

22 children (age range, 2–15 years) and 33 adults (age range, 18–63 years), plus one patient 

lacking age information, and were classified as low grade (grades I and II, n = 35, 59%) and 

high grade (grades III and IV, n = 24, 41%; see Supplementary Table 1). The frequency 

distribution of patient age exhibited two main modes at 13.5 and 38.8 years, respectively. 

Children developed mostly low-grade tumors (17 of 22 or 77% of pediatric gliomas were 
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low grade) and high-grade gliomas occurred primarily in adults (18 of 23 or 78% of high-

grade tumors were observed in adults; see Fig. 1a). Age and grade distribution of our cohort 

is consistent with the notion that NF1-gliomas are primarily benign during childhood, 

whereas malignant gliomagenesis occurs later in life12,13.

Whole exome sequencing (WES) was performed for the 59 NF1-glioma samples and 

matched blood DNA (available from 43 patients) and was used to call germline and somatic 

single nucleotide variants (SNVs), small insertions and deletions (indels), and copy number 

variations (CNVs) as previously described14–20 (see also Methods and Extended Data Fig. 

1). A dendrogram resulting from a ‘fingerprint’ analysis built from depth-dependent 

correlation models of allele fractions of known single nucleotide polymorphisms (SNPs) to 

identify samples from the same individual21 confirmed the matching of normal blood and 

glioma tissue for each paired sample (Extended Data Fig. 2). We validated each class of 

germline and somatic DNA sequence alterations discovered by WES through secondary 

assays. Germline and somatic SNVs were confirmed by Sanger sequencing of matched 

blood and tumor DNA. Across variant types, we validated 93% of SNVs that are therefore 

referred to as verified variants (Supplementary Table 2). We determined the functional 

effects of each missense mutation and in-frame indel by applying a pathogenicity prediction 

platform including eight independent algorithms (four evaluating missense mutations and 

four evaluating indels; see Methods and Supplementary Tables 2-4). Recurrent WES-

detected somatic CNVs were estimated by GISTIC2.0 and confirmed by qPCR of genomic 

DNA (CNV validation rate: 96%; see Extended Data Fig. 3a-d). We also carried out 

messenger RNA expression analysis from RNA sequencing of 29 tumors and DNA 

methylation of 31 tumors. A summary of the assays performed and case-assay overlap is 

presented in Supplementary Table 1.

The landscape of germline NF1 gene mutations in glioma patients.

To determine the pattern and frequency of the predisposing NF1 gene mutations in patients 

who developed glioma, we analyzed blood DNA by WES. We also inferred the germline 

status of NF1 mutations from the analysis of tumor-only samples using a recently described 

computational approach that models the allele frequency of genomic events under different 

scenarios accounting for copy number events, minor and major alleles, and clonality 

(Supplementary Table 3a,b)22. We found germline mutations inactivating the NF1 gene 

(typically truncating and frameshift) in 51 of the 56 (91%) patients analyzed. All mutation 

details are summarized in Supplementary Table 3a, b. The 91% NF1 germline mutation rate 

is within the highest frequencies previously reported in NF1 patients by several studies that 

have used multiple and highly sensitive assays for NF1 mutation detection (typically 83–

95%)23–26. Among the identified NF1 germline mutations, 32 variants had previously been 

reported in NF1 patients (http://www.hgmd.cf.ac.uk)27, whereas 19 are new pathogenic 

variants. We did not find pathogenic germline variants in genes previously implicated in 

NF1-like syndromes (SPRED1, BRAF, CBL, GNAS, HRAS, KRAS, MAP2K1, MAP2K2, 
MLH1, MSH2, MSH6, NF2, NRAS, PMS2, PTPN11, RAF1, RASA2, RIT1, SHOC2, 
SOS1, SOS2)28‘29. The comparative analysis of blood and glioma DNA revealed that the 

variant allele frequency of the constitutive NF1 gene mutations increased, resulting in loss of 

heterozygosity in the majority of tumors (Supplementary Table 3a,b). The spectrum of NF1 
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mutations in patients who developed gliomas did not cluster into specific domains of the 

NF1 protein and the distribution of mutations was not related to patient age or tumor grade 

(Fig. 1b). These findings are in agreement with the broad distribution of germline mutations 

of the NF1 gene previously reported in unselected NF1 patients3,25. They also indicate that 

the probability of developing a brain tumor is not dependent on particular patterns of NF1 
gene mutations in the patient’s germline. We found that, in addition to the pathogenic NF1 
germline variant, seven tumors harbored a second NF1 somatic mutation (Supplementary 

Table 3a,b). This finding is consistent with previous studies that reported frequent somatic 

NF1 mutations in neurofibromas from NF1 patients26,30–34. We used four of seven tumor 

samples for which DNA or RNA was available to amplify a single fragment that included 

both germline and somatic mutations, cloned the amplified genomic or complementary 

DNA, and sequenced individual clones. As expected, we found that multiple clones for each 

tumor contained only the germline or somatic mutation, indicating that the two mutations 

reside on different alleles (Supplementary Table 5).

The landscape of somatic genomic alterations cooperating with NF1 for glioma 
development.

The application of a stringent somatic mutation-calling algorithm to the cohort of NF1-

glioma resulted in 1,007 high-confidence somatic mutations across 59 tumors, including 838 

SNVs and 169 indels, 767 of which were predicted to carry pathogenic effects 

(Supplementary Table 4). Mutation burden increased with grade and age, with high-grade 

gliomas of adults having a sixfold higher mutation load than low-grade tumors in children 

(Fig. 1c-e). The lowest rate of mutations in pediatric NF1-glioma is within the low range of 

mutation frequencies in pediatric tumors35. More specifically, it reflects the lower frequency 

of mutations of sporadic brain tumors in children compared with their adult counterparts 

(Extended Data Fig. 4). However, the mutational clonality of NFI-glioma was consistent 

across patients’ ages and tumor grades (Extended Data Fig. 5). The analysis of copy number 

changes of NFI-glioma using GISTIC2.0 led to the identification of CNVs selected on the 

basis of focality, amplitude, and recurrence of alterations. Statistically significant CNVs 

comprised gains at 5q31.3 (FGF1), 5p15.33 (TERT), 4q31.21 (IL15), and 17p13.2 (KIF1C), 
and losses at 9p21.3 (CDKN2A/CDKN2B; see Extended Data Figs. 3a-d and 6 and 

Supplementary Table 6a,b). The Isocitrate Dehydrogenase 1 (IDH1) gene, which is 

frequently mutated in sporadic low-grade gliomas and the Glioma-CpG Island Methylator 

Phenotype (G-CIMP) group of glioblastomas36,37, was wild-type in all 59 NF1-gliomas, 

regardless of grade and age. Similarly, mutations of H3.3 histone genes, genetic lesions 

frequently found in sporadic pediatric gliomas38, were absent in pediatric or adult NF1-

gliomas. Additionally, the landscape of SNVs in low-grade NF1-gliomas was markedly 

different from that of high-grade tumors. Sporadic gliomas frequently harbor genetic 

alterations that cause telomere elongation. This process is typically carried out through 

mutations in the TERT gene promoter in IDH wild-type tumors10,39. Conversely, in lower 

grade, sporadic gliomas of adults harboring co-occurring mutations of IDH1 and TP53, the 

telomerase-independent alternative lengthening of telomeres (ALT) is sustained by 

inactivating mutations of ATRX, a gene encoding a chromatin remodeler and epigenetic 

modifier protein10,40. In NF1-glioma, we failed to detect mutations in the TERT promoter by 

targeted sequencing but we found copy number gain of the TERT gene more frequently in 
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low-grade than high-grade tumors (47% versus 12%, P = 9 × 10−3; Fig. 2a). Despite the 

absence of IDH1 mutations, high-grade NF1-glioma frequently harbored inactivating 

mutations of ATRX (9 of 24, 38%; Fig. 2a). In contrast, this alteration was very rare in low-

grade tumors (1 of 32 or 3.1%; Fig. 2a). ATRX mutations were mutually exclusive with 

TERT gene copy number gain and co-occurred with copy number loss of CDKN2A/
CDKN2B, which was also more frequent in high-grade (58%) in comparison with low-grade 

tumors (19%; see Fig. 2a, Extended Data Fig. 7, and Supplementary Table 7), and mutations 

of TP53. TP53 mutations were absent in low-grade NF1-glioma (Fig. 2a). ATRX mutation 

emerged from a multinomial regression model41, including also age and grade, as the only 

independent predictor of somatic mutational spectrum in protein-coding regions (P = 1.1 × 

10−3) with accumulation of C→T transitions in ATRX mutant NF1-glioma (Extended Data 

Fig. 8a, b). In conclusion, together with TP53 mutations and CDKN2A copy number losses, 

ATRX mutations characterize high- but not low-grade gliomas from NF1 patients.

Gene pathway analysis performed on CNVs and SNVs that had been selected for pathogenic 

features indicated that five biological pathways were commonly targeted, often in a mutually 

exclusive manner. In total, 22 of 24 (92%) high-grade and 24 of 32 (75%) low-grade NF1-

gliomas harbored genetic alterations in 1 or more of the 5 key biological processes (Fig. 2b 

and Extended Data Figs. 9 and 10). These included the PI3-kinase pathway that was more 

frequently targeted in high-grade (50%) compared with low-grade (3%) NF1-gliomas (P=4.7 

× 10−5), the transcription/chromatin regulation pathway that was disrupted in high-grade at 

higher frequency than low-grade NF1-gliomas (83% and 38%, respectively, P = 9.1 × 10−4), 

and RNA splicing, affecting 42% of high grade and 12% of low grade (P = 0.03). 

Conversely, the MAP kinase pathway was more frequently targeted in low-grade than high-

grade tumors (59% and 29%, respectively, P=0.03). Genetic alterations of cilium/centrosome 

occurred in a significant fraction of NF1-gliomas but were similarly distributed in high- and 

low-grade NF1-gliomas (Fig. 2b and Extended Data Figs. 9 and 10).

The multi-regional sampling of sporadic gliomas has revealed a notable extent of intra-

tumoral heterogeneity42. We performed WES from four regionally distinct tumor fragments 

of a pilocytic astrocytoma from an adult patient with NF1 (patient no. 39). Among the 4 

fragments, 36 of 64 of the observed alterations (56%, including 29 copy number gains and 7 

SNVs) were shared by all samplings, whereas 37% of alterations (24 of 64, including 5 copy 

number gains, 12 copy number losses, and 7 SNVs) were private to a single tumor lesion 

(Supplementary Fig. 1).

Validation and functional characterization of ATRX inactivation in high-grade NF1-glioma.

Functional annotation revealed that ATRX mutations are damaging events predicted to 

generate truncated or inactive ATRX proteins (Fig. 3a and Supplementary Table 4). In 

accordance with the increased frequency of high-grade tumors in older patients, we also 

found that ATRX mutations in NF1-gliomas primarily occurred in adults. Conversely, ATRX 
mutations were rare in children as only 1 of the 22 pediatric NF1-gliomas (4.5%) harbored 

an ATRX mutation (Fig. 3b).

As ATRX mutations occurring in NF1-gliomas are predicted to severely impact ATRX 

protein expression, we sought to validate our sequencing findings in an independent data set 
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of 23 NF1-gliomas (16 high-grade and 7 low-grade) using formalin-fixed, paraffin-

embedded samples and ATRX immunohistochemistry. Whereas ATRX protein expression 

was detected in 7 of 7 (100%) low-grade tumors, it was undetectable in 8 of 16 (50%) high-

grade NF1-glioma samples (P = 0.05; Fig. 3c,d). Thus, immunohistochemistry data 

converged with sequencing results and confirmed that approximately half of high-grade 

gliomas from NF1 patients lose ATRX, which is instead retained in low-grade tumors. Next, 

we asked whether loss of ATRX is associated with the ALT phenotype in the context of 

NF1-gliomas. In primary tumors, ALT can be determined by measuring a specific type of 

circular and mostly single-stranded C-rich extrachromosomal telomeric repeat (C-circles)43. 

The C-circle assay of 21 NF1-gliomas from which genomic DNA was available showed that 

10 of 10 gliomas harboring ATRX mutations scored positive for the presence of ALT-

specific C-circles but only 1 of 11 (9%) tumors that retained a wild-type ATRX gene was 

positive for C-circles (P = 2.3 × 10–5; see Fig. 3e).

A subgroup of low-grade NF1-glioma exhibits an enriched immune transcriptome and 
contains abundant cytolytic T lymphocyte infiltrates and tumor neoantigens.

To segregate the RNA expression subtypes across the NF1-glioma data set, we analyzed 29 

RNA-sequencing (RNAseq) profiles from 10 high-grade and 19 low-grade NF1-gliomas 

through unsupervised consensus clustering based on the 1,330 most variable genes, which 

resulted in 2 main clusters (cluster 1, red; cluster 2, blue; see Fig. 4a). Cluster 1 was specific 

for high-grade and cluster 2 for low-grade NF1-gliomas, thus indicating that tumor grading 

was the primary driver of transcriptome clustering. Next, we sought to identify the 

functional categories that characterize each cluster. A hierarchical clustering based on the 

100 most differentially expressed genes between the 2 groups was constructed with the 

Mann-Whitney-Wilcoxon (MWW) test, from which we extracted the top and bottom 50 

genes of the test statistics (Fig. 4b and Supplementary Table 8a,b). We performed a 

functional analysis of gene expression categories differentially enriched in high-grade versus 

low-grade NF1-glioma samples using a recently described robust, two-sided, single-sample 

MWW gene set test (MWW-GST) to inform the construction of a gene ontology enrichment 

map network (q <0.001, absolute normalized enrichment score (NES) >0.6)44. The network 

revealed that the genes enriched in high-grade NF1-gliomas belonged to categories involved 

in cell cycle and mitosis, chromosome organization, RNA metabolism, and neurogenesis, 

whereas the biological functions activated in low-grade NF1-gliomas composed an 

interconnected network of immune response categories notably enriched for T lymphocyte 

effector functions (Fig. 4c,d and Supplementary Table 9a,b). To recognize the individual 

low-grade tumors that exhibit immune cell activation, we applied single-sample MWW-GST 

using the enriched immune gene sets. The analysis showed that low-grade NF1-gliomas 

divided into two clusters, characterized by high- and low-immune gene expression, 

respectively (Fig. 4e). No histological group was predominant in either cluster (Pearson’s 

chi-squared P = 0.9635). qPCR with reverse transcription (RT-qPCR) confirmed that 

immune genes were elevated in the high-immune group of NFl-gliomas (Supplementary Fig. 

2a and Supplementary Table 10). The application of ESTIMATE45, a validated 

computational approach for the inference of the fraction of stromal/immune cells and 

consequently the tumor cell purity within tumor samples, showed that the low-grade/high-

immune group had significantly lower tumor purity and higher immune score when 
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compared with either the low-grade/low-immune or the high-grade groups (Fig. 4f,g). A 

transcriptomic-based analysis with five different CD8+ T cell-specific gene expression 

signatures46–50 showed that low-grade/high-immune NFl-gliomas contain higher numbers of 

effector CD8+ T cells (Fig. 4h-l). This finding was confirmed by quantitative 

immunostaining for the T lymphocyte markers CD3 and CD8 (Fig. 5a-d). Interestingly, the 

T cell infiltrates in high-immune NFl-gliomas included cells positive for granzyme B 

(GZMB), the key cytolytic effector that is upregulated on CD8+ T cell activation, and 

productive responses to immunotherapies (Fig. 5e,f). Conversely, immunostaining for 

specific markers of B lymphocytes (CD20) and macrophages (CD68) indicated that these 

cell types are very rare in both high- and low-immune groups (Supplementary Fig. 2b,c).

Recent data showed that aberrant DNA methylation of genes expressed by immune cells 

regulates the extent of immune infiltration in solid tumors51,52. Therefore, we asked whether 

activation of an immune signature in NFl-gliomas might be driven by differential DNA 

methylation. Towards this aim, we profiled 11 of the low-grade NFl-gliomas previously 

analyzed by RNAseq with the 850K Epic Methylation platform. Clustering based on the 

probes differentially methylated between high- and low-immune tumors revealed that the 

low-immune group exhibited a larger number of hyper-methylated probes than the high-

immune cluster (229 versus 30, P <0.0l, and absolute methylation fold-change >0.3; see 

Supplementary Fig. 3a and Supplementary Table 11a,b). Functional gene ontology analysis 

of the genes corresponding to the hyper-methylated probes in the low-immune group of NFl-

gliomas identified enriched immune system categories (Supplementary Fig. 3b and 

Supplementary Table 12). We further confirmed this finding by an integrated analysis of 

gene expression and DNA methylation, from which a total of 68 genes enriched for immune 

categories emerged as significantly hyper-methylated and down-regulated in low-versus 

high-immune NFl-gliomas (Supplementary Fig. 3c,d and Supplementary Tables 13 and 14). 

At least eight of these genes (indicated in the magnified area of Supplementary Fig. 3c) are 

involved in important T lymphocyte functions.

The execution of an effective anti-tumor immune response by effector T cells is typically 

driven by neoantigens generated by somatic mutations of cancer cells53. To assess whether 

high- and low-immune NFl-glioma subtypes contain a different number of tumor-specific 

neoantigens, we evaluated NFl-gliomas profiled with matched germline/tumor WES and 

tumor RNAseq for HLA typing and tumor neoantigen identification. The analysis revealed 

that the high- but not the low-immune group of NFl-gliomas expressed neoantigens (Fig. 

5g). To characterize the neoantigens identified in high-immune NFl-gliomas, we performed 

a homogenous, proximity-based assay that measures the affinity kinetics of mutant 

neoantigens and corresponding wild-type peptides for binding to their restricted HLA class I 

allele54. The mutant peptides bound with markedly higher affinity to HLA than their wild-

type peptide counterpart, consistent with the mutations conferring enhanced HLA binding 

(Fig. 5h and Supplementary Fig. 4).

NF1-gliomas resemble LGm6 subgroup of sporadic gliomas.

Having identified the landscape of genetic and epigenetic features of NFl-gliomas, we 

sought to relate them to those of the different subgroups of sporadic gliomas that we have 
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recently reported in the pan-glioma cohort from The Cancer Genome Atlas (TCGA) 

project10. We first compared the epigenetic features through an integrative analysis of DNA 

methylation profiles of NFl-gliomas and the TCGA pan-glioma data set. We integrated NFl-

gliomas with the TCGA pan-glioma cohort (n = 819) on 1,233 glioma-specific methylation 

probes and performed a supervised classification of NFl-gliomas using a nearest neighbor 

classifier trained on sporadic gliomas. We also performed an unsupervised clustering, 

merging sporadic TCGA gliomas and NFl-gliomas. Both supervised and unsupervised 

analyses showed that all of the NFl-glioma samples belong to the LGm6 group of gliomas, 

which is characterized by the divergent survival between grade II and III tumors (pilocytic 

astrocytoma-like) and grade IV tumors10 (LGm6-GBM; see Fig. 6a and Supplementary Fig. 

5). Next, we used mathematical methods based on a multiple linear regression model to 

deconvolute mutation signatures that in other cancer types have been associated with distinct 

underlying mutational processes55 (Supplementary Fig. 6). The clustering of the TCGA pan-

glioma cohort of IDH wild-type tumors based on mutational signatures revealed that the 

large majority (86%) of sporadic gliomas belonged to a group (cluster 2) that displays a 

single mutational signature (signature l). Conversely, a smaller group of tumors (cluster l) 

was richer in mutational signatures, including signature 3 that has been associated with 

failure of DNA double-strand break-repair by homologous recombination55. Although 

cluster l contained only l4% of IDH wild-type gliomas, it included 20 of 48 (42%) LGm6 

tumors, therefore manifesting a marked enrichment for this methylation group (P = 8.l × 

l0–8). Interestingly, l00% of NFl-gliomas fell within cluster l (Supplementary Fig. 6a). The 

subset of sporadic LGm6 gliomas in cluster l exhibited significant enrichment for low-grade 

histology (P = 0.02) and, albeit not reaching statistical significance, there was a trend for 

increased frequency of NF1 mutations in this group (Supplementary Fig. 6c).

Next, we explored in more detail the pattern of driver mutations and CNVs of the LGm6 

group of sporadic gliomas to ask whether it was related to the landscape of somatic 

alterations of NFl-gliomas. We found that somatic mutations of the NF1 gene are frequent in 

LGm6 tumors (25%). We also found that the key alterations identified in high-grade NFl-

gliomas (ATRX and TP53 mutations and CDKN2A copy number losses) were also highly 

recurrent in LGm6 grade III and IV tumors in the LGm6 subgroup (Fig. 6b). Re-evaluation 

of ATRX status revealed that mutation of this gene is more frequent in this group than the 

other subtypes of sporadic IDH wild-type gliomas (Fig. 6c). This was in contrast with grade 

II tumors that lacked ATRX mutations and displayed a greatly reduced frequency of 

mutations (Fig. 6b,c). Furthermore, we found that, whereas the clinical outcome of LGm6-

GBM was poor regardless of the ATRX status, ATRX mutations conferred a significantly 

worse prognosis to the grade III LGm6 patients (P = 0.03), with a survival that was 

comparable to that of LGm6-GBM. In contrast, survival of patients with ATRX wild-type 

grade III LGm6 glioma was similar to patients with grade II LGm6 glioma (Fig. 6d).

Finally, to identify the transcription factors that are causally involved as master regulators of 

the transcriptomic changes associated with loss of ATRX in the LGm6 group of IDH wild-

type gliomas, we used the transcriptional network assembled from a TCGA-derived pan-

glioma cohort and applied the regularized gradient-boosting machine (RGBM) approach, a 

recently developed algorithm that involves gradient-boosting machines for the inference of 

gene regulatory networks. RGBM was benchmarked with synthetic data and used to identify 
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the master regulators that direct mitochondrial metabolic reprogramming of tumors 

harboring the FGFR3-TACC3 gene fusions44,56. We inferred the activity of master 

regulators enriched in ATRX mutant samples within the LGm6 cluster of IDH wild-type 

gliomas by computing a score that integrates the ability of transcription factors to activate 

their targets in each individual tumor sample. The analysis resulted in 41 activated master 

regulators and 48 inhibited master regulators in the 8 ATRX mutant high-grade LGm6 

samples compared with 40 ATRX wild-type gliomas (two-sided MWW-GST q < 0.01, 

absolute NES > 0.6, and two-sided MWW test for differential activity q <0.01; see Fig. 6e 

and Supplementary Table 15). Unsupervised consensus clustering based on the activity of 

master regulators resulted in two main clusters defined by the divergent activity of the two 

groups of master regulators. The first cluster included all ATRX mutant samples, whereas 

the second cluster was exclusively composed of ATRX wild-type samples (Fig. 6f). This 

finding independently validates the 41 activated master regulators as key drivers of the 

hallmark features of ATRX mutant gliomas within the LGm6 group. The enrichment map 

network built from gene ontology categories and informed by the inferred targets of the 10 

most active master regulators in ATRX mutant tumors shown in Fig. 6e indicated that 

chromatin and transcription regulation are among the most enriched functions (Fisher’s 

exact test q <0.01; see Fig. 6g and Supplementary Table 16a,b). This is consistent with the 

role of the most active master regulators in ATRX mutant gliomas (MYST3, CHD2, ZMIZ1, 

NCOR1, NSD1) as chromatin and epigenetic modifiers. The activation of a unique set of 

master regulators with important functions in chromatin remodeling and transcriptional 

coregulation as drivers of the ATRX mutant transcriptome within the IDH wild-type LGm6 

cluster provides a clue to the molecular events that become deregulated and trigger global 

epigenomic remodeling and transcriptional changes following loss of ATRX function in 

brain tumors.

Discussion

Here, we reported the landscape of genetic and epigenetic alterations of gliomas occurring in 

NF1 patients. It is important to consider that the inaccessible brain tumor location, the 

relatively benign behavior of brain lesions, the comorbidities, and the neurological 

deterioration associated with surgical intervention most frequently argue against surgery as 

choice of treatment for glioma patients with NF113. Therefore, the collection of glioma 

samples analyzed in this study represents the selected subset of tumor lesions that undergo 

surgical resection in NF1 patients. Nevertheless, a comprehensive analysis of the complete 

spectrum of glioma grades throughout the lifespan of NF1 patients has allowed us to follow 

NF1 gliomagenesis and identify the genetic modules and the expression signatures that 

distinguish low-from high-grade tumors. We found that abundant infiltrates of activated T 

lymphocytes and mutation-derived neoantigens characterize a subset of low-grade gliomas, 

whereas high-grade tumors exhibit frequent mutations of ATRX typically co-occurring with 

alterations of TP53 and CDKN2A. We also classified gliomas occurring in the context of the 

NF1 syndrome within a particular methylation sub-group of sporadic gliomas, the LGm6, 

that recapitulates mutational and epigenetic profiles of NF1-glioma. The discovery that 

ATRX mutations drive aggressiveness in NF1-glioma prompted re-evaluation of the 
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mutational and clinical features of the sporadic glioma counterpart (LGm6), leading to a 

more accurate classification of the sporadic tumors that cluster into this group.

The NF1 tumor-predisposing syndrome is associated with a heterogeneous pattern of glioma 

in children and adults57. Therefore, the dissection of the molecular landscape of glioma in 

NF1 patients required a comprehensive molecular study of brain tumors that could not be 

limited to a particular age and/or glioma grade. We observed several features that 

differentiate low-grade gliomas— which are relatively more common in children—from the 

high-grade tumors that instead predominate in adults with NF1. Pediatric low-grade NF1-

gliomas exhibit a very low overall mutation rate in comparison to high-grade tumors, with 

few recurrent somatic mutations. The only set of recurrently mutated genes in low-grade 

NF1-glioma are genes involved in the MAPK pathway, thus recapitulating the genetic 

features of sporadic pilocytic astrocytoma. Conversely, the mutation burden of high-grade 

glioma in NF1 patients was higher and was characterized by recurrent alterations composing 

a genetic module that includes loss-of-function events targeting ATRX, TP53, and 

CDKN2A. Loss of ATRX in high-grade NF1-glioma is unique when considered within the 

genetic contexts associated with ATRX mutations in sporadic gliomas, in which they are 

typically associated with mutations of H3.3 in children or IDH1 in adults. The inactivating 

mutations of the ATRX gene result in loss of a functional ATRX protein with at least two 

important mechanistic consequences: development of the ALT phenotype and activation of a 

transcriptional/chromatin remodeling gene expression signature in ATRX mutant NF1-

glioma.

Previous work reported that mouse models of low-grade glioma sustained by loss of NF1 

manifest specific alterations of the immune microenvironment58. The analysis of human 

NF1-glioma confirms and extends this notion. We found that, compared with high-grade 

tumors, the gene expression signature more strongly enriched in low-grade NF1-glioma is an 

immune signature including several effector lymphocyte categories. This has been confirmed 

by the finding that the high-immune group of low-grade NF1-glioma contains both rich 

infiltrates of T lymphocytes, some of which are endowed with cytolytic activity, and 

mutation-derived neoantigens that exhibited enhanced HLA binding. The reduced DNA 

methylation of immune genes expressed in low-grade/high-immune NF1-glioma is 

consistent with previous studies in which reduced methylation and increased expression of 

immune genes in human tumors was linked to tumor infiltration by lymphocytes 

characterized by demethylated and transcriptionally active genes involved in T lymphocyte 

functions that, on the contrary, were highly methylated and transcriptionally repressed in 

cancer cells51,52. Taken together, our findings suggest that the long indolent course of low-

grade NF1-gliomas that rarely progress to high-grade disease9,13,57 may be preserved by the 

checks imposed by the adaptive immunity acquired by some low-grade tumors.

DNA methylation profiling classified NF1-gliomas within the LGm6 IDH wild-type cluster 

of sporadic gliomas from our recent panglioma TCGA study10. Prompted by the discovery 

that high-grade IDH wild-type gliomas in NF1 patients harbor frequent mutations of ATRX, 
we re-analyzed the LGm6 subgroup of sporadic tumors. We found that the original 

definition of pilocytic astrocytoma-like, which combined histological grade II and grade III 

tumors in the LGm6 cluster, is not an accurate representation of the biology of these tumors. 
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Indeed, mutation pattern and clinical outcome of grade II-LGm6 gliomas diverge markedly 

from those of grade III-LGm6 tumors harboring ATRX mutations, which are more similar to 

LGm6-GBM. This finding calls for a re-evaluation of the guidelines for the classification of 

IDH wild-type gliomas, whereby the LGm6 group exhibits a larger heterogeneity than 

previously described and requires analysis of the ATRX status for the accurate qualification 

of the clinical features. As previous studies have shown that loss of ATRX increases 

sensitivity to DNA-damaging agents59,60, ATRX mutations may represent a point of 

therapeutic intervention for high-grade NF1-gliomas and LGm6 sporadic gliomas. Our study 

also argues that, similar to NF1-glioma, the comparative genomic analysis of other NF1-

associated neoplasms with the sporadic counterpart may reveal distinct pathogenic 

mechanisms that could have therapeutic implications.

Methods

Sample cohort.

Glioma frozen samples and matched peripheral blood samples were available from NF1 

patients who underwent surgical treatment. Samples were obtained from the Onconeurotek 

Tumorbank-Hôpital Pitié-Salpêtriere (Paris, France), Istituto Neurologico Besta (Milano, 

Italy), MD Anderson Cancer Center (Houston, Texas, USA), and from collaborators in the 

United States, France, Spain, South Korea, Germany, and the United Kingdom. All samples 

were obtained with informed consent after approval of the institutional review boards (IRBs) 

of the respective hospitals where patients were treated and consisted of material in excess of 

what was required for diagnostic purposes. Material was anonymized at the time of 

collection. Progressive numbers were used to label specimens coded to preserve the 

confidentiality of the subjects. Genome sequence analyses with these materials were 

designated as IRB exempt under paragraph 4 and are covered under Columbia University 

IRB protocol no. IRB-AAAI7305.

All samples were from patients diagnosed with NF1 syndrome according to the National 

Institutes of Health Consensus Development Conference11. Clinical and sequencing 

information (case-assay overlap for WES, RNAseq, and DNA methylation array) are 

provided in Supplementary Table 1. Samples were collected from 56 NF1 patients. From 1 

patient 4 spatially distinct samples were obtained, giving a total of 59 samples included in 

the analyses. Blood DNA was available from 43 of the 56 patients and was used for WES 

and NF1 germline mutation calling to confirm the clinical diagnosis, and to identify SNVs 

from matched tumor-normal pairs. The patient cohort includes 35 low-grade gliomas (23 

pilocytic astrocytoma, 5 ganglioglioma, 3 xanthoastrocytoma, 2 optic pathway glioma, 1 

diffuse glioma, and 1 low-grade calcifying astrocytoma) and 24 high-grade gliomas (13 

glioblastoma multiforme, 6 anaplastic astrocytoma, 1 anaplastic diffuse glioma, 1 anaplastic 

ganglioglioma, 1 anaplastic xanthoastrocytoma, 1 gliosarcoma, and 1 classified as grade III 

astrocytoma). The median age of the patients at time of surgery was 20 years, with 22 

pediatric patients (<16 years) and 33 adult patients (>16 years). For one patient age was 

unknown.
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WES.

Sequencing libraries were generated from 1 μg genomic DNA using Agilent SureSelect 

Human All Exon kit (Agilent Technologies, California, USA) following the manufacturer’s 

recommendations. Libraries were sequenced using Illumina HiSeq platform (150-bp paired 

end). We performed quality control according to the following procedure and discarded: (1) 

a read pair if either 1 read contained adapter contamination, (2) a read pair if more than 10% 

of bases were uncertain in either 1 read, and (3) a read pair if the proportion of low-quality 

bases was over 50% in either 1 read. Cleaned sequencing reads had an average error rate 

lower than 1% and a Phred quality score of Q30. Burrows-Wheeler Aligner61 was used to 

map the paired-end clean reads to the human reference genome (GRCh37/hg19). After 

sorting with SAMtools62 and marking duplicates with the Broad Picard, we computed the 

coverage and depth based on the BAM files. Sequencing depth had a mean of 103 × and a 

median of 91 ×, with 99.78% of coverage mean in the target region. Aligned reads were 

further processed using GATK63 to remove low mapping quality reads (mapping quality 

score ≥20) and re-aligned in the genomic regions around potential indels. The quality scores 

were then recalculated for the cleaned BAM files. To eliminate additional potential mapping 

artifacts, we excluded variants within 50-bp intervals whose sequences aligned more than 3 

times within the whole genome. To confirm that tumor and blood samples from the same 

patient were properly paired, we performed a ‘fingerprint’ analysis using NGSCheckMate21, 

a model-based method evaluating the correlation between the variant allele fractions, defined 

as the ratio of the number of reads supporting a non-reference allele to the total number of 

reads, estimated from two samples at known SNP sites.

Mutation calling and pathogenicity prediction.

Somatic SNVs and indels were identified in tumors with matched normal samples by 

integrating the results from five algorithms for variant calling: VarScan216, Freebayes14, 

Strelka17, MuTect18, and VarDict19. In tumor samples for which blood DNA was 

unavailable, nucleotide variants were identified using GATK HaplotypeCaller63 followed by 

the correction with a virtual normal as a substitute for the missing matched normal to filter 

out germline variants20. The virtual normal was built from a set of 433 public samples from 

healthy, unrelated individuals sequenced to high depth in the context of the 1000 Genomes 

Project64. The virtual normal approach outperforms the standard matched normal algorithms 

to remove germline variants, and offers significant improvement over the use of public 

polymorphism databases alone20. To reduce false positive events, all somatic variants 

detected by matched normal and virtual normal methods were further filtered according to 

the following criteria:

• variant-supporting read count ≥2

• variant allele frequency ≥0.05

• average variant position in variant-supporting reads (relative to read length) ≥ 0.1 

and ≤0.9

• average distance to effective 3’ end of variant position in variant-supporting 

reads (relative to read length) ≥0.2
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• fraction of variant-supporting reads from each strand ≥0.01

• average mismatch quality difference (variant - reference) ≤50

• average mapping quality difference (reference - variant) ≤50

Somatic variants were annotated using AnnoVar65 algorithm, which aggregates information 

from genomic and protein resources (GENECODE, UniProt, dbNSFP) with cancer 

(COSMIC, ClinVar) and non-cancer variant databases (dbSNP, 1000 Genomes, Kaviar, 

Haplotype Reference Consortium, Exome Aggregation Consortium, NHLBI Exome Variant 

Server). Among the annotated variants, we selected only those producing a direct effect on 

the protein sequence (missense, truncating, stoploss, splicing variants, frameshift, and in-

frame indels). Variants reported in the non-cancer databases with a minor allele frequency 

≥0.05 were classified as germline polymorphisms and excluded. Additionally, variants 

occurring in very large genes (for example, TTN and USH2A) and highly paralogous genes 

(for example, mucins and keratins) were filtered out as common sequencing artifacts.

GATK HaplotypeCaller63 was used to call germline variants occurring in NF1 and in genes 

previously implicated in NF1-like syndromes. Identified variants were processed to remove 

false positives as described above.

The functional effect of missense SNVs and in-frame indels was determined using multiple 

prediction algoritms. MutationTaster266, Polyphen267, Provean68, and SIFT69 were applied 

to predict the pathogenicity of missense SNVs. The pathogenic effect of in-frame indels was 

determined by FATHMM-Indel70, Provean68, SIFT-Indel71, and VEST-Indel72. Variants 

predicted as damaging by two or more algorithms were classified as pathogenic mutations.

Germline somatic log odds filter for NF1 mutations in samples without matched normal 
DNA.

To distinguish between germline and somatic events of the NF1 gene detected in tumor 

without a matching normal, we used the algorithm implemented by Chapuy et al.22. The 

algorithm computes the log ratio of the probability that the allele fraction of a genomic event 

is consistent with the allele fraction modeled for a hypothetical germline event or a modeled 

somatic event. Given the model of allele fraction x in one of eight possible scenarios (two 

possibilities for germline events and six cases for somatic events), the probability that the 

observed allele fraction is consistent with this model is calculated using a Beta probability 

distribution function, where the modeled hypothesis is tested against the actual count of 

reference (nREF) and variant (nALT) reads: p(x) = β(x;nALT + 1,nREF + 1). The algorithm 

defines two models, xg1 and xg1, for the allele frequency x in the case of germline events, 

depending on whether the germline event is on the minor or major allele of a copy number 

event, respectively. The algorithm defines six models of the allele frequency for somatic 

events accounting for the minor and major allele when a somatic event co-occurs with a 

copy number event (xs1 and xs2), occurs before a copy number event (xs3 and xs4), occurs 

after a copy number event (xs5), or if it occurs in a different subclone (xs6). The formulas for 

the computation of each model of allele fraction depend on the cancer cell fraction, purity, 

ploidy, and local copy number computed by ABSOLUTE73, as reported by Chapuy et al.22
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The log odds ratio of the most likely germline and somatic model is then defined as:

L = log
max p xg1 , p xg2

max p xs1 , p xs2 , …, p xs6

If L is greater than a given threshold, the event is considered germline; otherwise, it is 

considered somatic. In the ideal case a threshold of 0 can be selected; however, given the 

variability in purity this cut-off must be suitably calibrated. Here, we used the NF1 genomic 

events in tumors with matched normal, all of which have been validated via Sanger 

sequencing, for calibration. The threshold on the log ratio was set in such a way to have 

100% precision on the validated mutations. The value of the log ratio L is reported in 

Supplementary Table 3.

DNA copy number analysis.

Somatic copy number was estimated from WES reads by GATK copy number protocol74. 

The coverage depth of aligned reads was analyzed to detect CNVs using a hidden Markov 

model for change-point detection. A normal DNA reference was created by integrating copy 

number from NF1 patient blood samples and used for the comparison with CNVs detected 

in tumor samples to encapsulate sequencing noise and identify somatic events. Telomeric 

regions were excluded from the analysis, as they tend to generate artifacts in the CNV calls. 

GISTIC215 was used to integrate results from individual patients and identify genomic 

regions recurrently amplified or deleted in NF1-glioma.

Chromosomes X and Y copy numbers in normal and tumor samples were estimated from 

WES data using CNVkit75 to confirm patient gender and to compute chromosome X tumor 

ploidy.

mRNA sequencing and unsupervised cluster analysis.

mRNA was purified from total RNA using poly-T oligo-attached magnetic beads. The 

mRNA was first fragmented randomly by addition of fragmentation buffer. First-strand 

cDNA was synthesized using random hexamer primers and M-MuLV reverse transcriptase 

(RNase H-). Second-strand cDNA synthesis was subsequently performed using DNA 

polymerase I and RNase H. Double-stranded cDNA was purified using AMPure XP beads. 

Remaining overhangs of the purified double-stranded cDNA were converted into blunt ends 

via exonuclease/polymerase activities. After adenylation of 3’ ends of DNA fragments, 

NEBNext Adaptor with hairpin loop structure was ligated to prepare for hybridization (NEB 

Next Ultra RNA Library Prep Kit). Libraries were sequenced on the Illumina HiSeq 

platform (150-bp paired end). Sequencing quality was assessed through error rate and base 

quality distributions of reads for each sample. We filtered the raw data, removing reads 

containing adaptors and reads containing more than 10% of bases that could not be 

determined, and reads including over 50% bases with a Phred quality score ≤5. Cleaned 

reads had error rate mean ≤2% and Q30 ≥90% for all samples. The reads were aligned to the 

human reference genome (GRCh37/hg19) using STAR76 and the expression was quantitated 

at gene level using featureCounts, a count-based estimation algorithm77. Downstream 
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analysis of gene expression was performed in the R statistical environment. We applied GC-

correction for the within normalization step and upper-quantile for the between phase, 

according to a described pipeline78. Most variable genes (1,330) among 29 NF1-glioma 

samples were used for consensus clustering on the Euclidean distance matrix (10,000 

random samplings using 70% of the 29 samples). Best sample clustering (Calinski and 

Harabasz criterion) was obtained with k = 2 groups. Differential expression analysis was 

then performed between the two groups of samples, and the list of the 100 most 

differentially expressed genes (two-sided MWW test, top and bottom 50 genes of the test 

statistics) was used to construct a heat map comprising the whole data set. Samples were 

clustered using the hierarchical clustering algorithm based on the Ward linkage method and 

Euclidean distance as implemented in R.

Gene ontology networks.

Gene ontology enrichment was computed using either: (1) MWW-GST, when a full ranked 

list of genes was available44; or (2) Fisher’s exact test, when only a list of significant genes 

was available (that is, down-regulated and hyper-methylated genes, lists of genes in the 

regulons of the top 10 ATRX mutant, and wild-type-specific master regulators). The 

significant gene ontology terms from MWW-GST (q <0.001, absolute NES >0.6) or Fisher’s 

exact test (q < 0.01) analysis were further analyzed using the Enrichment Map application of 

Cytoscape79. In the network, nodes represent the terms and edges represent known term 

interactions and are defined by the number of shared genes between the pair of terms. Size 

of the nodes is proportional to the number of genes in the category. A cut-off was set to the 

overlapping coefficient (>0.5) to select the overlapping gene sets.

Assembly of the transcriptional interactomes and master regulator analysis.

To identify master regulators of the gene expression signature activated in the high-grade 

LGm6 IDH wild-type pan-glioma ATRX mutant (8 samples) versus ATRX wild-type (40 

samples) subgroup, we used the transcriptional network assembled from gene expression 

profiles of the IDH wild-type pan-glioma data set using the RGBM algorithm from our 

previous works44,56. The transcriptional interactome comprised 300,969 (median regulon 

size: 141) interactions between a predefined set of 2,137 transcriptional regulators and 

12,656 target genes. We also used the same workflow for master regulator analysis and 

activity, described in the same papers. As a result, we obtained 89 master regulators, 41 of 

which were enriched in ATRX mutant samples (two-sided MWW-GST adjusted P < 0.01, 

absolute NES> 0.6, and two-sided MWW test for differential activity adjusted P < 0.01).

DNA methylation analysis and integrative analysis with the TCGA IDH wild-type cohort.

Methylation analysis of NF1-glioma genomic DNA was performed using the Illumina 

Human 850K EPIC Infinium Methylation BeadChip. Array data were imported in the R 

statistical framework using the Minfi package14 and normalized using functional 

normalization. NF1-glioma DNA methylation profiles were classified in one of the pan-

glioma methylation clusters10 by a nearest neighbor classifier using the 1,233 cancer-

specific DNA methylation probes obtained by intersecting the 1,300 probes used by 

Ceccarelli et al.10 and those available on the 850K EPIC Infinium Methylation platform. For 

the joint unsupervised analysis of the TCGA cohort and the NF1 tumors reported in 
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Supplementary Fig. 5, we first dichotomized the data using a β value > 0.25 as a threshold 

for positive DNA methylation. This binarization tends to mitigate the effects of variable 

tumor purity between the TCGA cohort and the NF1 cohort. Unsupervised hierarchical 

clustering on the 1,233 CpG sites was then applied using a binary distance metric for 

clustering and Ward’s method for linkage. The dendogram has two main branches, one 

corresponding to IDH mutant tumors and one corresponding to IDH wild-type tumors. The 

Calinski and Harabasz curve had two local maxima at k = 2 and k = 5. Cutting the tree with 

5 groups resulted in cluster 3 containing 100% of the NF1 tumors (31 of 31 samples with 

DNA methylation assay) and 95% (62 of 65) sporadic LGm6 tumors.

Integrative expression and DNA methylation analysis.

We analyzed differences in DNA methylation level between the subgroups of low-grade 

NF1-gliomas characterized by differential activation of immune cells. After removing 

probes targeting X and Y chromosomes and probes not associated with promoters, the final 

methylation data matrix comprised 11 low-grade gliomas (5 low-immune and 6 high-

immune) and 105,956 probes. Differential methylation analysis was then performed between 

low- and high-immune samples of the low-grade cohort using the two-sided MWW test (P < 

0.01 and absolute methylation fold-change >0.3) and the list of the 259 most differentially 

methylated probes (229 hyper- and 30 hypo-methylated) was used to construct a heat map 

comprising the whole data set. Samples were clustered using the hierarchical clustering 

algorithm based on the Ward linkage method and Euclidean distance as implemented in R. 

Furthermore, differential expression analysis was also performed on the two groups of 

samples (9 low-immune and 10 high-immune) using the two-sided MWW test (P < 0.01 and 

absolute expression fold-change >1; 15 up- and 109 down-regulated) for integrative analysis. 

The primary probe for each gene was chosen as the one located closest to the −100-bp 

position in the promoter relative to the transcription start site; this location should be in a 

key region of the promoter to correlate with expression changes. Integration of the 

normalized gene expression and DNA methylation gene lists identified a total of 115 of 

11,979 unique genes with both significant DNA methylation and RNAseq gene expression 

changes between low- and high-immune lower-grade samples. In particular, 68 of the 115 

genes were significantly hyper-methylated and down-regulated in low-grade/low-immune 

compared to low-grade/high-immune samples. Finally, a starburst plot80 for comparison of 

DNA methylation and RNAseq gene expression data was constructed using log10(P value) 

for DNA methylation (x axis) and gene expression (y axis) for each gene. In the plot, the P 
values are multiplied by the sign of difference of beta values. The dashed black lines indicate 

the P value at 0.05.

Pairwise mutual exclusivity and co-occurrence of somatic alterations.

Pairwise mutually exclusive somatic alterations were identified using CoMEt81 with the 

‘exhaustive’ option. Pairwise co-occurrence was tested by Fisher’s exact test. Statistically 

significant exclusion and co-occurrence patterns were visualized using Cytoscape with edge 

thickness representing -log10(P value).
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Mutational signatures.

The R package DeConstructSigs was used to determine the proportion of COSMIC 

signatures as defined by Alexandrov et al.55.

Dirichlet-multinomial regression for mutational spectra.

The correlation between mutational spectrum as response variable (C >T, C >A, C >G, T 

>C, T > A, and T >G) and age, grade, and ATRX mutational status as predictor variable was 

determined by a Dirichlet-multinomial model82.

Clonality estimation.

Allele mutations and copy number calls for each sample were loaded into maftools83 to 

obtain mutational clones using the inferHeterogeneity function.

Neoantigen prediction.

For all samples analyzed with both Exome-seq and RNAseq available, the four-digit HLA 

type was predicted using Polysolver84, Optitype85, Phlat86, and Seq2hla87, respectively. 

HLA type was determined if predictions were consistent in any one of following conditions: 

(1) Polysolver and Optitype, (2) Polysolver and Phlat, (3) Polysolver and Seq2hla, (4) 

Optitype and Phlat, or (5) Optitype and Seq2hla. Missense mutations were then used to 

generate a list of all possible 9-mers. Binding affinity of mutant and corresponding wild-type 

peptides to the patient’s germline HLA alleles was predicted using netMHCpan-4.031. High-

affinity binders were defined as those with a half-maximum inhibitory concentration (IC50) 

equal to or less than 500 nM. Low-affinity wild-type allele binders were defined as having 

an IC50 greater than 500 nM. Accordingly, a mutant-specific binder was referred to as a 

neoantigen when the mutant IC50 was less than 500 nM and the wild-type IC50 was more 

than 500 nM.

In vitro peptide-HLA I binding assay.

Peptide-HLA class I in vitro binding affinities were determined as described previously54. 

Purified recombinant HLA class I heavy chains were diluted into a refolding buffer (tris-

maleate buffer, pH 6.6) containing β2-microglobulin and serial 10-fold dilutions (0.01 nM to 

200 μM) of the test peptide, and incubated for 48 h at 18 °C to allow for equilibrium to be 

reached in PBS. The HLA concentration was 1.25 nM, and β2-microglobulin concentration 

was 10 nM. Complex formation was detected using a proximity-based luminescent oxygen 

channeling immunoassay. Donor beads were obtained preconjugated with streptavidin from 

Perkin Elmer; acceptor beads were conjugated in house with W6/32, a pan-specific anti-

HLA class I mouse monoclonal antibody (Sigma-Aldrich, MABN1783, 1 mg ml−1) using 

standard procedures as described by the manufacturer. Binding affinity (Kd) was determined 

as described previously54,88,89 using the GraphPad Prism software 6.0. Data are means ± s.d. 

of counts per second. Amino acid abbreviations: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, 

Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, 

Val; W, Trp; Y, Tyr.
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C-circle assay.

The C-circle assay was done as previously described43. Briefly, standard curves for 

quantitative analysis were prepared with serially diluted QuickPreps of ALT[+] U2OS and 

ALT[-] HEK293 cell lines. DNA concentration in the QuickPrep was determined using 

Qubit HS dsDNA assay. Samples were subjected to rolling circle amplification (RCA) with 

or without ϕ29 polymerase for 14 h at 30 °C followed by SYBR Green qPCR. Total RCA 

reaction volume was 20 μl. The reaction was stopped by incubation at 70 °C for 20 min. We 

used 36B4 primers to quantitate telomere content level and determine telomere per single-

copy gene ratio, telomere, and single-copy gene. Real-time qPCR amplification with 

telomere primers in the sample subjected to RCA in the presence of ϕ29 polymerase detects 

total telomere content (linear chromosomal telomeres plus extrachromosomal telomere C-

circle DNA). Amplification with telomere primers of RCA without ϕ29 polymerase detects 

only linear chromosomal telomeres. The presence of extrachromosomal circular DNA in the 

sample causes a downward shift of the standard curve with telomere primers and ϕ29. 

Amplification with 36B4 primers determines the single-copy gene quantity in the reaction. 

C-circle content was calculated using the following formulas: C-circle content = 2-ΔΔCT, 

where ΔΔCT = NormΔCT(+) - NormΔCT (−), while NormΔCT (+) = CT(+) - CT(36B4) and 

NormΔCT(−) = CT(−) - CT(36B4) (Ct, threshold cycle). Data are presented as the average of 

three technical replicates for each DNA sample.

RT-qPCR.

Total RNA was prepared using the AllPrep DNA/RNA/Protein Mini Kit (Qiagen) according 

to the manufacturer’s instructions, and cDNA was synthesized using SuperScript II Reverse 

Transcriptase (Invitrogen). RT-qPCR was performed with a 7500 Real Time PCR thermal 

cycler system (Applied Biosystems), using SYBR Green PCR Master Mix (Applied 

Biosystems). Primer sequences are reported in Supplementary Table 17a. Data are presented 

as -ΔCT (CT18S - CT selected gene) of triplicate samples (CT, threshold cycle). Bar graphs 

show mean ± s.d. of three technical replicates for each glioma sample. Experiments were 

repeated three times with similar results.

Genomic qPCR.

Genomic DNA from blood and tumor samples was assayed by qPCR using SYBRGreen 

PCR Master Mix (Applied Biosystems). Dimethyl sulfoxide was added at a final 

concentration of 5% for amplification of the INK4A gene. Fluorescence intensities were 

detected using 7500 Real Time PCR thermal cycler (Applied Biosystems), and CT values 

were calculated using High-Resolution Melt Software v2.0 (Applied Biosystems). Primer 

sequences are reported in Supplementary Table 17b. Standard curves for test and reference 

primers were generated using dilution series of genomic DNA. Each dilution was tested in 

triplicate. The CT values (the cycle at which the change in fluorescence for the SYBR dye 

passes a significance threshold) were used for data normalization. ΔCT values (CT18S - CT 

selected gene) of triplicate samples were used to calculate copy number changes relative to 

control DNA using Microsoft Excel. Bar graphs show mean ± s.d. of three technical 

replicates for each glioma sample. Experiments were repeated three times with similar 

results.
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Bi-allelic mutation analysis of NF1.

To determine whether the two different mutations detected in an individual tumor were on 

the same or on separate alleles, the genomic DNA or cDNA (obtained from reverse 

transcription using Superscript II reverse transcriptase, Invitrogen) fragments that included 

the two mutations were amplified using AccuPrime taq DNA polymerase high fidelity 

(primers designed to target each specific amplicon and amplicon size for each tumor sample 

are listed in Supplementary Table 5). PCR products of the corrected size were purified using 

QIAquick PCR Purification Kit (Qiagen), subcloned into plasmid pCR Blunt II TOPO, and 

used to transform Escherichia coli. DNA was isolated from individual colonies resistant to 

kanamycin and subjected to Sanger sequencing reaction using sense or anti-sense primers to 

detect one of the two mutations in the sense or the anti-sense sequence, respectively. Results 

were analyzed using Sequencer 5.4.6 (Gene Codes Corporation). The sequence of each 

identified mutation was confirmed in at least two independent plasmid clones 

(Supplementary Table 5).

Immunohistochemistry.

NF1-glioma samples analyzed by immunostaining had been stored in the Onconeurotek 

tumor bank (certified NF S96 900) and received authorization for analysis from the Ethics 

Committee (CPP Ile de France VI, ref. A39II) and the French Ministry for Research (AC 

2013–1962). Immunostaining was performed as previously described44. For ATRX 

immunohistochemistry, deparaffinization and immunolabeling of sections were performed 

by a fully automatic immunohistochemistry system, Ventana BenchMark XT (Roche), using 

a streptavidin-peroxidase complex with diaminobenzidine as chromogen and hematoxylin 

counterstaining of nuclei. Primary ATRX antibody was from Sigma-Aldrich (HPA001906) 

and was used at 1:200 dilution. Images were acquired under 20 X magnification using an 

Olympus IX70 microscope equipped with a digital camera.

For immune cell marker analysis, tumor sections were deparaffinized in xylene and 

rehydrated in a graded series of ethyl alcohol. Antigen retrieval was performed in citrate 

solution pH 6.0 (CD20 and CD68) or Tris-EDTA solution pH 9.0 using a decloaking 

chamber (7 min for CD3 and CD8 and 15 min for GZMB). After peroxidase blocking in 3% 

H2O2 for 15 min, slides were blocked for 1 h in 10% horse or goat serum, 0.25% Triton 

X-100, and 1 X PBS. Primary antibodies were incubated at 4 °C overnight: CD3 (Dako, 

A0452, 1:200), CD8 (Leica NCL-L-CD8–4B11, 1:200), GZMB (Leica, PA0291, ready to 

use), CD20 (Leica, NCL-L-CD20-L26, 1:200), and CD68 (Sigma, HPA048982, 1:2,000). 

Sections were incubated in horseradish peroxidase-conjugated secondary antibody (Dako 

Envision+ System HRP Labelled Polymer ready to use anti-mouse and anti-rabbit, K4000 

and K4003, respectively) for 30 min and 3,3-di-amino-benzidine (Vector) was used as 

substrate. Nuclei were counterstained with hematoxylin (Sigma). Slides were dehydrated 

and mounted. Five to 11 images for each section were acquired under 20× magnification 

using an Olympus IX70 microscope equipped with a digital camera. Positive cells were 

counted in an area of 0.15 mm2. Results are shown as average number of positive cells per 

0.15 mm2. Box plots span the first quartile to the third quartile and whiskers indicate the 

smallest and largest values. Comparisons between two groups were analyzed by t-test with 
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Welch correction (two-sided, unequal variance). Statistical analyses were performed and P 
values were obtained using the GraphPad Prism software 6.0.

Statistical analysis.

In general, two to four independent experiments were performed. Comparisons between 

groups were analyzed by t-test with Welch correction (two-sided, unequal variance) and/or 

the MWW non-parametric test when appropriate. Results in bar graphs are expressed as 

mean ± s.d. for the indicated number of observations. Box plots and scatter plots show 

median with the first quartile to the third quartile, and whiskers indicate the smallest and 

largest values. All statistical analyses were performed and P values were obtained using the 

GraphPad Prism software 6.0 or the R software (https://www.r-project.org) and are reported 

in the Source Data.

Extended Data

D’Angelo et al. Page 22

Nat Med. Author manuscript; available in PMC 2019 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.r-project.org


Extended Data Fig. 1 |. Data analysis workflow.
Fifty nine tumor samples from 56 NF1-glioma patients with 43 matched normal were 

profiled with WES, DNA Methylation profiles (31 tumors) and RNA sequencing (29 

tumors). WES was used to call NF1 germline mutations using HaplotypeCaller and Somatic-

germline log odds filter. Somatic SNVs were called from WES data by integrating the 

results of five algorithms (Freebayes, MuTect, Strelka, VarDict and VarScan). Recurrent 

CNVs were detected by GATK and GISTIC2. SNVs and CNVs were validated by Sanger 

sequencing (93% validation rate) and genomic qPCR (96% validation rate), respectively. 

Neoantigen prediction was obtained using netMHCpan and HLA genotype was determined 

by Polysolver, Optitype, Phlat and Seq2hla and validated by affinity binding kinetics. 

COSMIC cancer mutation signatures were identified by deconstructSig and compared to 

those occurring in sporadic glioma. DNA Methylation arrays were used to classify NF1 

glioma in the methylation subtypes of sporadic glioma form the TCGA pan-glioma dataset 

(KNN). RNAseq was used to define gene expression clusters and immune subtypes of low-

grade NF1-glioma and results were confirmed by RT-qPCR and immunohistochemistry. 

Integrative analysis of gene expression and DNA Methylation identified epigenetic 

signatures characterizing immune subtypes of low-grade glioma. A pan-glioma gene 

regulatory network was used to identify MRs of the ATRX-mutant phenotype in LGm6 

sporadic and NF1-glioma (RGBM). Finally, the impact of ATRX mutation on survival was 

assessed using TCGA pan-glioma and NF1-glioma data.
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Extended Data Fig. 2 |. Fingerprint analysis of WES NF1 samples.
Dendrogram of hierarchical clustering of 59 tumor and 43 normal samples based on Pearson 

correlation coefficients of SNPs allele fractions. Case ID and the tissue specimen are 

indicated (blood DNA, red; tumor with available matched blood DNA, blue; tumor without 

matched normal DNA, yellow). The analysis confirmed proper matching of samples for each 

of the 43 tumor-blood DNA pairs. Thirteen tumors without available paired normal DNA 

(yellow) showed individual branches in the clustering dendrogram.
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Extended Data Fig. 3 |. Validation of recurrent CNVs.
Genomic qPCR was performed to assay copy number changes for TERT (n = 10 glioma 

samples), b, IL-15 (n = 8 glioma samples), c, FGF1 (n = 17 glioma samples) and d, 

CDKN2A (n = 11 glioma samples). Red and blue bars indicate WES-inferred gene gain and 

loss, respectively. Analysis of normal DNA (green bars) was included to define diploidy 

(dotted line). Tumor samples diploid for the tested gene were included as control (white 

bars). Bar graphs show mean± s.d. of 3 technical replicates. Experiments were repeated 

three times with similar results.
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Extended Data Fig. 4 |. Somatic mutation burden of NF1-glioma and pediatric and adult cancer 
genomes.
Distribution of somatic non-synonymous coding mutation rate is represented on a 

logarithmic scale for NF1- and sporadic glioma (bold) and other frequent cancer types, 

including pediatric tumors. Cancer types and subgroups are ordered by increasing mutation 

frequency median, with the lowest frequencies (left) found in pediatric tumors and low-

grade NF1-glioma. Somatic mutations used to calculate the mutational burden for different 

cancer types were retrieved from TCGA (adult tumors) and TARGET (pediatric tumors) 

databases.
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Extended Data Fig. 5 |. Mutational clonality.
Analysis of mutational clonality in 55 NF1-glioma samples. a, Number of mutation clones 

relative to age (Pearson correlation coefficient = −0.126 and p = 0.363), and b, tumor grade 

(Pearson correlation coefficient = 0.031 and P = 0.820). Blue line: linear regression; shaded 

area: 95% confidence interval.
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Extended Data Fig. 6 |. Analysis of DNA Copy Number Variations.
Schematics of chromosome location peaks (gain, red; loss, blue) identified using GISTIC2. 

Peaks are designated by candidate targets for each region, selected according to criteria 

described in Methods. The complete list of chromosome location peaks is included in 

Supplementary Table 6a, b.
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Extended Data Fig. 7 |. Mutual exclusivity and co-occurrence of genetic alterations in NF1-
glioma.
a, Mutually exclusive and b, co-occurring genetic alterations in NF1-glioma were evaluated 

using CoMEt and two-sided Fisher’s exact test, respectively. Significant mutual relationships 

between two gene alterations are indicated by a line (green, exclusion; red, co-occurrence) 

whose thickness represents −log10 of p-value (reported in Supplementary Table 7).
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Extended Data Fig. 8 |. Distribution of somatic mutation spectrum in NF1-glioma.
Dirichlet multinomial regression test for ATRX status (n = 10 and n = 46 ATRX mutant and 

ATRX wild-type samples, respectively), age (n = 22 pediatric glioma; n = 33 adult glioma) 

and glioma grade (n = 24 high-grade glioma; n = 32 low-grade glioma). b, The relative 

proportions of the six different possible base-pair substitutions are represented by barplots 

for ATRX mutant (n = 10, solid fill) and ATRX wild-type (n = 46, patterned fill). The 

relative frequency of C > T transition was significantly higher in ATRX mutant tumors (p = 

5.1 × 10–3, two-sided Fisher’s exact test).
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Extended Data Fig. 9 |. Somatic alterations in PI3K and Transcription/Chromatin regulation 
pathways in NF1-glioma.
Integrated matrix of 59 NF1-glioma samples (56 patients) and somatic alterations (SNVs 

and indels, and significant copy number variations) occurring in genes linked to PI3K and 

transcription/chromatin regulation pathways (left panel, high-grade glioma; right panels low-

grade glioma). Rows and columns represent genes and tumor samples, respectively. NF1-

glioma samples are sorted in the same order of Fig. 2. Genes are grouped by PI3K (purple) 

and transcription/chromatin regulation (blue) pathways. Genomic alterations, age, the 

histology of glioma and the identification of NF1 germline mutation are shown by the 
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indicated colors. Validation by Sanger sequencing (SNVs) and quantitative-genomic PCR 

(gains and losses) are indicated by yellow and green triangles, respectively.
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Extended Data Fig. 10 |. Somatic alterations in splicing, MAPK and cilium/centrosome pathways 
in NF1-glioma.
Integrated matrix of 59 NFl-glioma (56 patients) and somatic alterations (SNVs and indels, 

and significant copy number variations) occurring in genes included in splicing, MAPK and 

cilium/centrosome pathways (left panel, high-grade glioma; right panels low-grade glioma). 

Rows and columns represent genes and tumor samples, respectively. NFl-glioma samples are 

sorted in the same order of Fig. 2. Genes are grouped by splicing (red), MAPK (yellow) and 

cilium/centrosome (green) pathways. Genomic alterations, age, the histology of glioma and 

the identification of NF1 germline mutation are shown by color as indicated. Validation by 

Sanger sequencing (SNVs) and quantitative-genomic PCR (gains and losses) are indicated 

by yellow and green triangles, respectively.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Analysis of germline and somatic mutations in NF1-glioma patients.
a, The relative frequency distribution of age at diagnosis is represented by density plot: the 

overall distribution of NF1-glioma patients (dashed black line, n = 55) by age identifies two 

peaks, 13.5 and 38.8 years. Low-grade gliomas (blue line, n = 32) occur more frequently in 

children, while high-grade gliomas (red line, n = 23) are diagnosed more frequently in 

adults. b, Germline mutations in the NF1 gene identified in NFI-glioma patients by WES. 

The spectrum of NF1 germline variants (SNVs and indels) is represented with each mutation 

shown only once per patient. We identified NF1 germline pathogenic mutation in 51 of 56 

(91%) patients. Patients no. 47 and no. 52 had one additional pathogenic germline mutation. 

c, Scatter plot showing the number of somatic mutations (SNVs and indels) occurring in 

low-grade and high-grade NFI-glioma (low-grade glioma, n = 32; high-grade glioma, n = 

24; P = 7.4×10−5, two-sided Mann-Whitney-Wilcoxon (MWW) test). d, Scatter plot 

showing the number of somatic mutations occurring in patients younger than 16 years 

(pediatric, n = 22) or older than 18 years (adult, n = 33; P = 9.8×10−4, two-sided MWW 

test). Mutations in the patient of unknown age were not included in the analysis. e, Scatter 

plot showing the number of mutations according to grade and age (low-grade glioma, 

pediatric, n = 17; high-grade glioma, pediatric, n = 5; low-grade glioma, adult, n = 15; high-

grade glioma, adult, n = 18). Mutations in the patient of unknown age were not included in 

the analysis. P = 3.8×10−3, high-grade versus low-grade adult gliomas; P = 0.025, adult 

versus pediatric low-grade gliomas; P = 0.06, low-grade versus high-grade pediatric 

gliomas; P = 0.07, pediatric versus adult high-grade gliomas (two-sided MWW test). Scatter 

plots show median and interquartile range. Median and range of mutations are reported 

below each plot.
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Fig. 2 |. Landscape of somatic genomic alterations in NF1-glioma.
a, Integrated matrix of 59 glioma samples from 56 patients and gene variants (SNVs, indels, 

and significant CNVs) observed in NF1-glioma (left panel, high-grade glioma; right panels, 

low-grade glioma). Rows and columns represent genes and tumor samples, respectively. 

Genomic alterations, age, the histology of glioma, and NF1 germline mutations are 

indicated. NFI-glioma samples are sorted by their mutation profiles, except for patient no. 5, 

hypermutated high-grade glioma, and patient no. 39, including four spatially distinct glioma 

samples, which are shown at the last columns of left and right panel, respectively. 

Recurrently mutated genes are selected for their previously established association with 

glioma (ATRX, CDKN2A, TP53, PIK3CA/B, PTEN, BRAF, FGFR1 and FGF1, PRKCA, 
TERT), cancer biology (DOCK2/3/6, FDZ3/8, BCL9/9L, TOP2/3B), and immune functions 

(IL15, DGKQ). Genes are sorted according to higher frequency (percentage of patients) in 

high-grade (top, red) or low-grade gliomas (bottom, blue), respectively. Validations by 

Sanger sequencing (SNVs) and quantitative-genomic PCR (gains and losses) are indicated 

by yellow and green triangles, respectively. LOH, loss of heterozygosity. b, Function/

pathway analysis of damaging somatic mutations and CNVs. Genetic alterations in NF1-

gliomas grouped into PI3K, transcription/chromatin regulation, splicing, MAPK, and cilium/
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centrosome functions. A significantly higher frequency of genetic alterations in PI3K, 

transcription/chromatin regulation, and splicing pathway were observed in high-grade 

glioma (n = 24; P = 4.7×10−5, P = 9.1×10−4, and P = 0.03, respectively; two-sided Fisher’s 

exact test), while mutations in the MAPK pathway were more frequent in low-grade glioma 

(n = 32; P = 0.03, two-sided Fisher’s exact test). The integrated matrices of NF1-glioma and 

gene pathway alterations are reported in Extended Data Figs. 9 and 10.
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Fig. 3 |. Analysis of ATRX somatic mutations in NF1-glioma patients.
a, ATRX mutations were identified by WES. The spectrum of ATRX somatic variants 

(SNVs and indels) is represented with each mutation shown only once per patient. We 

identified and validated by Sanger sequencing ATRX pathogenic mutations in 10 patients (1 

low-grade glioma, 3%; 9 high-grade gliomas, 37.5%). b, The relative frequency of age 

distribution is represented for all patients (dashed black line, n = 55), ATRX wild-type 

(green line, n = 46), and ATRX mutant gliomas (red line, n = 9; for one patient carrying 

ATRX mutation age was unknown and was not included in the analysis). c, 

Microphotographs of ATRX immunohistochemistry in gliomas from NF1 patients. 

Representative images are from n = 7 low-grade gliomas (left) and n = 16 high-grade 

gliomas (right). Results were validated on more than ten independent samples to ensure the 

staining pattern on human tissue was reproducible. High-grade glioma samples were 

negative for ATRX expression whereas low-grade gliomas retained ATRX protein 

expression. d, Contingency table shows loss of ATRX protein expression in 8 of 16 high-

grade and in none of 7 low-grade NF1-gliomas (P= 0.05, two-sided Fisher’s exact test). e, C-

circle (CC) assay was performed to measure ALT activity in NF1-glioma samples. The 

scatter plot reports the normalized CC content for each glioma according to ATRX 
mutational status: ATRX wild-type (blue, n = 11) and ATRX mutant gliomas (red, n = 10). 

For each group the median with interquartile range is indicated. All ATRX mutant gliomas 

but only one ATRX wild-type glioma showed increased ALT activity (normalized CC 

content greater than 1; P = 2.3×10−5, two-sided MWW test).
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Fig. 4 |. Transcriptomic analysis of NF1-glioma.
a, Consensus clustering on the Euclidean distance matrix based on the most variable genes 

among 29 NF1-glioma samples (1,330 genes). The consensus matrix is obtained from 

10,000 random samplings using 70% of the 29 samples. The 10 high-grade samples fall in 1 

cluster (red) and all low-grade samples (n = 19) fall in a different cluster (blue). b, 

Hierarchical clustering of 29 NF1-gliomas by Euclidean distance with the Ward linkage 

method was based on the 100 most differentially expressed genes (two-sided MWW test, top 

and bottom 50 genes). c,d, Enrichment map network of statistically significant gene 
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ontology categories in (c) ten high-grade and (d) 19 low-grade NF1-gliomas (two-sided 

MWW-GST; q < 0.001, absolute NES >0.6). Nodes represent gene ontology terms and lines 

their connectivity. Node size is proportional to number of genes in the gene ontology 

category and line thickness indicates the fraction of genes shared between groups. Gene 

network categories in NF1 high-grade gliomas are linked to mitotic progression, 

chromosome organization, and RNA biogenesis/regulation. Gene network categories in NF1 

low-grade gliomas converge on proinflammatory immune response enriched for T 

lymphocyte effector functions. e, Unsupervised clustering of single-sample MWW-GST 

enrichments of the categories in d. Low-grade NF1-gliomas are divided into two clusters 

(red and green), characterized by high- and low-immune gene set enrichments, respectively 

(two-sided MWW test; only statistically significant categories are shown; the complete list is 

presented in Supplementary Table 8). f, Tumor purity scores of low-grade/high-immune, 

low-grade/low-immune, and high-grade tumors computed by ESTIMATE. The low-grade/

high-immune group has significantly lower tumor purity when compared with either the 

low-grade/low-immune or the high-grade glioma groups (P = 0.001, high-immune versus 

low-immune low-grade gliomas; P = 0.01 high-immune low-grade gliomas versus high-

grade gliomas; P = 0.762 for low-immune low-grade gliomas versus high-grade gliomas; 

two-sided t-test). g, Immune scores of low-grade/high-immune, low-grade/low-immune, and 

high-grade tumors computed by ESTIMATE (P = 9.6×10−5, high-immune versus low-

immune low-grade gliomas; P = 0.005 high-immune low-grade gliomas versus high-grade 

gliomas; P = 0.852 for low-immune low-grade gliomas versus high-grade gliomas; two-

sided t-test). h-l, Enrichments of CD8+ T cell functions in low-grade/high-immune 

compared with low-grade/low-immune and high-grade gliomas. Boxplots report the z-scores 

and P values (two-sided MWW test) for published CD8+ T cell signatures46–50. Scatter plots 

show median, interquartile, and minimum to maximum range.

D’Angelo et al. Page 43

Nat Med. Author manuscript; available in PMC 2019 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5 |. T cell infiltration and neoantigen analysis in low-grade NF1-glioma subclusters.
a, Representative microphotographs of CD3 immunohistochemistry in low-grade/high-

immune (left panels) and low-grade/low-immune (right panels) NF1-gliomas. Results were 

validated on more than ten independent samples to ensure that the staining pattern on human 

tissue was reproducible. b, The number of CD3-positive cells was scored in at least 5 

pictures from low-grade/high-immune (n = 6, red dots) and low-grade/low-immune (n = 6, 

green dots) (*P = 0.003, two-sided t-test with Welch correction; scatter plots show mean 

with minimum to maximum range). c, Representative microphotographs of CD8 
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immunohistochemistry in low-grade/high-immune (left panels) and low-grade/low-immune 

(right panels) NFI-gliomas. Results were validated on more than ten independent samples to 

ensure that the staining pattern on human tissue was reproducible. d, The number of CD8-

positive cells was scored in at least 5 pictures from low-grade/high-immune (n = 6, red dots) 

and low-grade/low-immune (n = 6, green dots) (*P = 0.017, two-sided t-test with Welch 

correction; scatter plots show mean with minimum to maximum range). e, Representative 

microphotographs of GZMB immunohistochemistry in low-grade/high-immune (left panels) 

and low-grade/low-immune (right panels) NFI-gliomas. Results were validated on more than 

ten independent samples to ensure that the staining pattern on human tissue was 

reproducible. f, The number of GZMB-positive cells was scored in at least 5 pictures from 

low-grade/high-immune (n = 6, red dots) and low-grade/low-immune (n = 6, green dots) (*P 
= 0.004, two-sided t-test with Welch correction; scatter plots show mean with minimum to 

maximum range). g, Quantification of neoantigens in low-grade NFI-glioma subclusters. 

The number of neoantigens per somatic mutation was significantly higher in the set of low-

grade/high-immune NFI-gliomas (P = 0.034, two-sided MWW test). h, In vitro binding 

affinity kinetics of neoantigens and corresponding wild-type peptides for their restricted 

HLA class I allele. Data are shown as counts per second with increasing peptide 

concentration (log10 M). Data are mean of two independent experiments. MT, mutant 

peptide; WT, wild-type peptide.
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Fig. 6 |. NF1-gliomas resemble LGm6 subgroup of sporadic gliomas.
a, Heat map of DNA methylation data for the TCGA pan-glioma cohort (n = 819) and 31 

NFI-gliomas according to the methylation clusters of sporadic gliomas10. The methylation 

profiles of NFI-glioma samples were classified using a nearest neighbor classifier based on 

1,233 cancer-specific DNA methylation probes. Thirty-one of 31 NFI-glioma samples were 

assigned to the LGm6 methylation cluster, one of the methylation clusters that includes both 

low-grade and high-grade gliomas. b, Oncoprint of selected somatic genomic alterations in 

the LGm6 group of gliomas from the TCGA data set (ATRX, TP53, CDKN2A, PTEN, 
PIK3CA, NF1, BRAF). Rows and columns represent genes and samples, respectively. 

Glioma grade was significantly associated with alterations of ATRX, TP53, CDKN2A, 
PTEN. Glioma grade IV, n = 40; glioma grade III, n = 12; glioma grade II, n = 13; P = 0.01, 

P = 0.02, P = 0.04, P = 0.002, respectively; two-sided Fisher’s exact test. c, Barplot of 

ATRX non-synonymous somatic mutations occurring in phenotypic subtypes of IDH wild-

type gliomas (classic-like, mesenchymal-like, and LGm6) and LGm6 gliomas grouped by 

tumor grade. ATRX mutations were significantly enriched in grade III LGm6 (P = 0.01, two-

sided Fisher’s exact test). d, Kaplan-Meier survival analysis of LGm6 gliomas stratified 

according to histological grade and ATRX status for grade III gliomas: grade II (green curve, 
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n = 13), grade III ATRX mutant (blue curve, n = 5), grade III ATRX wild-type (cyan, n = 7), 

grade IV (red curve, n = 23). The ATRX mutant grade III subgroup showed a significantly 

worse survival when compared with ATRX wild-type grade III patients (P = 0.03, two-sided 

log rank test). No difference in clinical outcome was observed when comparing ATRX 
mutant grade III with grade IV. e, Master regulators (MRs) in ATRX mutant glioma. Gray 

curves represent the activity of each of the 10 MRs with the highest (red) or lowest (blue) 

activity. Red or blue lines indicate individual ATRX mutant samples displaying high or low 

activity, respectively, of the MRs in ATRX mutant compared with ATRX wild-type (n = 8 

and n = 40 ATRX mutant and ATRX wild-type samples, respectively; P value, two-sided 

MWW test for differential activity (left) and mean of the activity (right)). f, Hierarchical 

clustering of MR activity in 48 high-grade LGm6 IDH wild-type gliomas (36 grade IV and 

12 grade III). Data were obtained using the Euclidean distance and Ward linkage method 

built on differential activity of MRs in ATRX mutant (8 samples, red) versus ATRX wild-

type (40 samples, black) tumors (two-sided MWW-GST q <0.01, absolute NES >0.6, and 

two-sided MWW test for differential activity P <0.01). The activity of 41 of 89 MRs was 

increased in ATRX mutant samples. g, Enrichment map network of statistically significant 

gene ontology categories (two-sided Fisher’s exact test q <0.01) for genes included in the 

regulons of the 10 MRs with the highest activity in ATRX mutant gliomas. Nodes represent 

gene ontology terms and lines their connectivity. Node size is proportional to number of 

genes in the gene ontology category and line thickness indicates the fraction of genes shared 

between groups.
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