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Abstract 

In precision oncology, reliable identification of tumor-specific DNA mutations requires 

sequencing tumor DNA and non-tumor DNA (so-called “matched normal”) from the same 

patient. The normal sample allows researchers to distinguish acquired (somatic) and hereditary 

(germline) variants.  The ability to distinguish somatic and germline variants facilitates 
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estimation of tumor mutation burden (TMB), which is a recently FDA-approved pan-cancer 

marker for highly successful cancer immunotherapies; in tumor-only variant calling (i.e., without 

a matched normal), the difficulty in discriminating germline and somatic variants results in 

inflated and unreliable TMB estimates.  We apply machine learning to the task of somatic vs 

germline classification in tumor-only samples using TabNet, a recently developed attentive deep 

learning model for tabular data that has achieved state of the art performance in multiple 

classification tasks (Arik and Pfister 2019). We constructed a training set for supervised 

classification using features derived from tumor-only variant calling and drawing somatic and 

germline truth-labels from an independent pipeline incorporating the patient-matched normal 

samples.  Our trained model achieved state-of-the-art performance on two hold-out test 

datasets:  a TCGA dataset including sarcoma, breast adenocarcinoma, and endometrial 

carcinoma samples (F1-score:  88.3), and a metastatic melanoma dataset, (F1-score 79.8). 

Concordance between matched-normal and tumor-only TMB improves from R2 = 0.006 to 0.705 

with the addition of our classifier.  And importantly, this approach generalizes across tumor 

tissue types and capture kits and has a call rate of 100%. The interpretable feature masks of the 

attentive deep learning model explain the reasons for misclassified variants.  We reproduce the 

recent finding that tumor-only TMB estimates for Black patients are extremely inflated relative to 

that of White patients due to the racial biases of germline databases.   We show that our 

machine learning approach appreciably reduces this racial bias in tumor-only variant-calling.   

Introduction 

An important application of somatic variant calling is patient selection in cancer immunotherapy 

clinical trials because somatic mutation count can predict response to immune checkpoint 

inhibitors (ICI)(Samstein et al. 2019; Wu et al. 2019; Litchfield et al. 2021).  Tumor mutation 

burden (TMB)—defined as the number of coding nonsynonymous somatic mutations per 

megabase of DNA, and often measured through whole exome sequencing (WES)—is a strong 
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predictor of response and survival in solid tumors.  Encouraged by the recent results from the 

successful phase 2 KEYNOTE-158 trial(Marabelle et al. 2020), the FDA has approved TMB as 

a marker across all tumor subtypes for the anti-PD1 ICI pembrolizumab, where increased TMB 

is associated with increased benefit.  This approval broadens the importance of reliably 

estimating patient-level TMB using WES data. 

In addition to TMB, identifying somatic and germline variants is used to understand the 

molecular basis of cancer.  Somatic mutation underlies cancer formation and progression, often 

through gain-of-function mutations in oncogenes and loss-of-function mutations in tumor 

suppressors(Martincorena and Campbell 2015).  It is becoming increasingly crucial to 

characterize and identify somatic mutations to predict whether a cancer patient will be resistant 

or responsive to existing targeted therapies.  Germline variation in genes such as BRCA and 

TP53 can also be heritable cancer drivers, so understanding the germline context of cancer can 

complement the characterization of acquired somatic mutations.   

Matched-normal samples are not always available in the clinic, leading to entirely tumor-only 

cohorts and mixed cohorts of tumor-only and matched-normal samples.  Causes for missing a 

matched normal sample include failed quality control in the normal samples and a lack of 

consent to procure germline blood samples.  Furthermore, acquisition of a patient’s matched 

normal must be included in the design of the oncology clinical trial, which is not a routine 

practice.    

The absence of a patient-matched normal complicates somatic variant calling in precision 

oncology.  The sheer number of rare germline variants per sample and their broad distribution of 

variant allele fractions (VAFs) (Supplemental Figure 1) makes it a challenge to retrieve the 

relatively small number of genuine somatic mutations.   One study reported the absence of a 

matched normal sample leads to a 67% false positive rate; thus, most putative somatic 
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mutations in tumor-only variant calling are actually rare germline variants(Shi et al. 2018).  The 

resulting tumor-only TMB estimate is artificially inflated relative to that derived via germline 

variant subtraction using a matched normal.  One recent study reported a fold inflation of 2.2-

16.9 for tumor-only-calculated TMB, depending on the chosen germline database filtering 

strategy(Parikh et al. 2020).   

Several computational methods have been developed to improve tumor-only variant calling, 

either by sophisticated filtering approaches(Sukhai et al. 2019), or via explicit statistical 

inference of the somatic alteration state of the cancer genome (as in the algorithms 

ABSOLUTE(Carter et al. 2012) and CLONET(Prandi et al. 2014)).  The latter category 

include  PureCN(Riester et al. 2016; Oh et al. 2020) and SGZ(Sun et al. 2018), two recently 

developed Bayesian methods that infer the altered genomic state of the tumor to estimate 

somatic and germline probabilities in samples without a matched normal. These methods first 

estimate global properties of the cancer genome--purity and ploidy--as well as local DNA copy 

number.  They integrate this information with the observed variant allele frequencies (VAFs) to 

calculate the posterior probability that a mutation is somatic.  The complexity of the cancer 

genome, including clonality and structural variation, coupled with the complex statistics of next-

generation sequencing(Poplin et al. 2018) makes improving upon these statistical models 

challenging. Recently, state-of-the-art speed and accuracy have been achieved using machine 

learning for somatic variant calling with matched-normal samples(Wood et al. 2018; Huang et al. 

2019; Sahraeian et al. 2019).  Rather than attempting to model explicitly the likelihood functions 

for somatic mutations, these methods involve training a machine learning classifier on a diverse 

training set with truth labels and applying the trained classifier to new oncology 

samples.  Taking inspiration from these studies, we hypothesized a supervised machine 

learning algorithm would be effective for classifying mutations as somatic or germline in patient 

derived solid tumor samples lacking a matched normal.  
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Results 

Train / test overview 

We used a somatic mutation calling pipeline to process samples both with and without the 

matched normal sample (see Materials and Methods).  Because TMB, copy-number variation 

(CNV), and sample composition (tumor purity) can impact somatic mutation calling, we selected 

oncology samples from different tissue types that span biological extremes, including: ovarian 

adenocarcinoma (high purity, low TMB, high CNV), sarcoma (low TMB, high CNV), testicular 

germ cell cancer (extremely low TMB), endometrial carcinoma, colorectal adenocarcinoma, 

metastatic melanoma,  and lung adenocarcinoma and squamous carcinoma (high TMB), and 

several other cancer subtypes from the Cancer Genome Atlas (TCGA).   

Model  

We engineered 30 mutation- and copy-number-specific features using tumor-only samples (see 

Materials and Methods). This included traditional features for somatic variant calling such as 

germline database frequency, COSMIC somatic mutation database counts, and read-based 

statistics such as variant allele fraction (VAF) and major allele frequency. Expecting somatic 

mutations to exhibit a different mutational spectrum from germline variants, we also included 

features that characterize the trinucleotide context and base substitution subtypes that are the 

basis for mutational signature analysis(Alexandrov et al. 2020). The local copy number for each 

variant is represented by features derived from copy-number segmentation data and variant 

calls.  Briefly, using germline variant databases and copy-number segments, we identify 

neighboring heterozygous germline SNPs of similar copy number, and bin the variant counts 

into 20 non-overlapping VAF bins (see Materials and Methods).  

The somatic and germline truth labels were determined by running an independent variant-

calling pipeline using the matched normal samples. Variants passing in the matched-normal 
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pipeline were considered somatic; all other variants in the tumor-only pipeline were considered 

germline.  The merged tumor-only feature matrix and truth labels were used for the binary 

somatic vs germline classification task. 

To classify mutations, we selected TabNet, an attentive deep learning model for tabular 

data(Arik and Pfister 2019) to classify mutations as somatic or germline.   TabNet leverages 

attention modules and has been shown to achieve state-of-the-art performance on tabular data, 

outperforming XGBoost and other powerful supervised machine learning models.  In addition to 

improved accuracy over XGBoost, the feature masks of TabNet allow interpretation for each 

classification instance and allow the saliency of each feature and each instance to be visualized 

in a matrix.  The overall train / validation / test scheme is illustrated in Figure 1. 

Training set construction 

For our training set we selected 105 tumor samples from distinct patients in seven cancer 

subtypes from TCGA.  Somatic and germline truth labels were generated using the results of a 

variant-calling pipeline that included the patient-matched normal samples.  We engineered 

features for our deep learning classifier using the variant and CNV calls from the independent 

tumor-only pipeline, which used a process-matched panel of normals for each patient that did 

not include the patient-matched normal samples (see Materials and Methods).  The training 

dataset consisted of 15 samples from each of seven solid tumor cancer subtype studies in the 

Cancer Genome Atlas: bladder urothelial carcinoma (BLCA)(Cancer Genome Atlas Research 

Network 2014a), glioblastoma multiforme (GBM)(Brennan et al. 2013), head and neck 

squamous cell Carcinoma (HNSC)(Cancer Genome Atlas Network 2015), lung adenocarcinoma 

(LUAD)(Cancer Genome Atlas Research Network 2014b), lung squamous cell carcinoma 

(LUSC)(Cancer Genome Atlas Research Network 2012), ovarian serous 

cystadenocarcinoma(OV)(Cancer Genome Atlas Research Network 2011), and stomach 
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adenocarcinoma (STAD)(Cancer Genome Atlas Research Network 2014c). To impose technical 

consistency within the training set, all the selected samples from these studies were sequenced 

at the Broad Institute using the Agilent Custom V2 exome capture kit.  This was done so we 

could later investigate whether our trained model could generalize to other exome capture kits 

and still achieve high classification accuracy.    

Validation set construction 

Our validation set consisted of 15 tumor samples from each of three cancer subtypes (45 total): 

colon adenocarcinoma (COAD)(Cancer Genome Atlas Network 2012a), lymphoid neoplasm 

diffuse large B-cell lymphoma (DLBC),  and testicular germ cell tumors (TGCT)(Shen et al. 

2018). These three TCGA cohorts were sequenced at Baylor College of Medicine with the 

SeqCap EZ HGSC VCRome capture kit.  These validation WES data samples have been 

shown to exhibit different biases in genomic coverage than the Agilent Custom V2 kit(Wang, 

Kim, and Chuang 2018).  TabNet classified the variants in the full validation set. The resulting 

predictions were subsequently compared to the matched-normal truth labels and evaluated for 

performance (Table 1; Figure 2).  After 100 training epochs, the optimal model was selected as 

the model with the best classification performance on the validation data.   Thus, we selected 

the model with the best generalization to new tumor types sequenced with a new capture kit.    

Training and validation results 

During training, the optimal trained model was selected as the one with the best performance on 

the validation set.  This optimal model achieved an AUC of 0.962 on the training data.  After 

choosing the best posterior probability threshold for somatic vs germline classification, the 

model achieved an F1-score of 0.859, sensitivity (true positive rate, TPR) of 0.869 and positive 

predictive value (PPV) of 0.848.  These results suggest the model was fitting the data yet not 

overparameterized to the point of memorizing the training data. The performance on the 
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validation data was lower than the training set, with an AUC of 0.909 and an F1-score of 0.633 

(TPR: 0.734, PPV: 0.557), suggesting either the model is slightly over-fitting, or the validation 

data are more challenging to classify.  This performance is still a marked improvement over the 

naive tumor-only method (using a process matched panel of normals and multiple germline 

databases to remove likely germline SNPs) where all variants remaining after filtering are 

classified as somatic:   F1-score of 0.28 (TPR 1.0, PPV: 0.16).    Figure 2A displays patient-level 

performance for all TCGA datasets, grouped by tissue type.  During training, TabNet fit LUAD 

and LUSC tissues most easily, with the highest TPR and PPV, meaning somatic and germline 

variants should be relatively easy to discriminate in these cancer types.  GBM was the hardest 

solid tumor subtype to classify, with the lowest TPR and PPV.  Thus, tumor-only variant calling 

appears to be relatively tractable for lung cancers and challenging for GBM.   In the validation 

set, TGCT exhibited high sensitivity and the lowest PPV.  COAD exhibited the highest PPV and 

the lowest sensitivity.  The reason for these differences is discussed below in “Explaining 

variability in performance”. 

Holdout test sets 

After model training and selection, we constructed two separate holdout test sets, including four 

cancer subtypes and a new exome capture kit, Roche Nimblegen SeqCap EZ Exome 

v3.  Results are shown in Table 1. 

The first holdout test set included solid tumor samples from 45 patients from the following three 

TCGA studies (15 each):  breast invasive carcinoma (BRCA)(Cancer Genome Atlas Network 

2012b), sarcoma (SARC)(Cancer Genome Atlas Research Network 2017), and uterine corpus 

endometrial carcinoma (UCEC)(Cancer Genome Atlas Research Network  2013) .  These 

samples were sequenced at Washington University in St. Louis. Table 1 displays the trained 

model’s performance on the hold-out test datasets.  TabNet achieved an AUC of 0.942, F1-
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score of 0.883, and a balanced accuracy of 0.879 overall, including SNVs and indels.  TabNet 

performs better on SNVs (AUC: 0.945, F1: 0.89) than indels (AUC: 0.784, F1: 0.638).  Across 

the three tissue subtypes, the best PPV and worst TPR were both observed for UCEC, and the 

best TPR and worst PPV were both observed for BRCA.   

To further identify any potential batch effects, we acquired a final holdout dataset comprising 

non-TCGA data. This final holdout dataset included 23 samples from the Hugo et al., 2016 

metastatic melanoma study(Hugo et al. 2016).  Relative to the TCGA test set, our model 

performed better in both TPR and PPV on this dataset at the patient level (Figure 2B).  Yet 

performance on the overall variant-level was slightly worse due to the influence of high-TMB 

patients.  AUC was 0.852, 0.85, 0.82,    F1-score was 0.798, 0.798, and 0.728 for overall, 

SNVs, and indels, respectively.   

Concordance of tumor-mutational burden estimation methods 

The reliable estimation of TMB is a critical benchmark for a model designed to improve tumor-

only variant calling.  This capacity is especially relevant in immuno-oncology clinical trials where 

TMB is a potent biomarker of response(Goodman et al. 2017) and survival(Samstein et al. 

2019).  We define the naive tumor-only method as a non-machine-learning approach that 

incorporates a process-matched panel of normals, multiple germline variant databases, and 

standard variant filtering techniques (see Materials and Methods) to remove germline variants 

and artifacts.  Our machine-learning-based approach applies TabNet’s somatic vs germline 

classifications to the results of the naive approach, using the optimal somatic posterior 

probability cutoff of 0.5 to isolate predicted somatic mutations.     

To evaluate clinical utility, we compared the naïve and machine-learning-based TMB estimates 

with those derived from the matched-normal gold standard (Figure 3). Using linear regression, 

we calculated an R2 of 0.156, 0.318, and 0.006 for TCGA train, validation, and test sets, 
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respectively, indicating a weak correlation between matched and tumor-only TMBs (Figure 

3A).   Notably, in the BRCA, SARC, and UCEC test set, the rank order of TMBs is markedly 

different between naive and matched-normal methods.  The slopes of these fits (0.148, 0.254, 

0.016 for TCGA training, validation, and test datasets, respectively) are substantially less than 

1.0 in all cohorts, indicating a consistently inflated TMB result for tumor-only samples with a 

magnitude that agrees with recently reported results(Parikh et al. 2020; Shi et al. 2018).   Next, 

we evaluate the relationship between TMB from TabNet-predicted somatic predictions to 

matched-normal germline-subtracted TMB (Figure 3B).  Linear regression fits for train, 

validation, and test sets yielded R2 values of 0.938, 0.871, 0.705, indicating a 3- to 44-fold 

improvement over the naive method.  The slope of best fit was similarly encouraging (train, 

0.97; validation, 0.913; test, 0.804), with our model achieving a 5-fold improvement relative to 

the naïve approach. TabNet’s improvement to these concordance metrics argues for the use of 

TabNet-corrected TMB estimates for clinical variant analysis in tumor-only 

samples.  Importantly, TabNet enables reliable TMB comparisons in mixed cohorts composed of 

both tumor-only and paired tumor-normal specimens. 

Comparison to PureCN 

By varying the posterior probability threshold across 500 quantiles, we constructed ROC and 

precision-recall curves for TabNet and PureCN.  On the training data, we found optimal F1-

scores of 0.868 near a threshold of 0.48 for TabNet, and 0.842 near a threshold of 0.0051 for 

PureCN.  However, after breaking down performance into SNVs and indels, we noticed different 

probability thresholds yielded optimal results for the two variant categories, for both TabNet and 

PureCN.  For SNVs, TabNet’s optimal F1-score occurred at a cutoff of 0.508, PureCN’s at 

0.005.  For indels, the optimal F1-score occurred at a threshold of 0.1368 for Tabnet and 0.014 

for PureCN.  We used these probability thresholds derived from performance on the training set 

to make our binary predictions for the blind test sets.  These are the results reported in Table 1. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 9, 2021. ; https://doi.org/10.1101/2021.12.07.471513doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.07.471513
http://creativecommons.org/licenses/by-nd/4.0/


Figure 4A displays the ROC curve comparing TabNet and PureCN for the BRCA, SARC, and 

UCEC TCGA holdout test set of 45 patient samples.  Both algorithms are highly tunable and 

TabNet’s has higher AUC and is consistently concave down, suggesting more stable 

dependence on posterior-probability cutoffs.  

For the holdout datasets, TabNet achieved better overall performance and better performance 

on SNVs, with PureCN achieving better performance on indels. On the TCGA holdout test set, 

TabNet has the best F1-score overall and for SNVs, with a 12.7% improvement overall and 

13.2% improvement for SNVs relative to PureCN.  For indels, PureCN achieved an F1-score of 

67.3% and 74.9% balanced accuracy, whereas Tabnet achieved an F1-score of 63.8% and 

73.1% balanced accuracy.  On the second hold-out test set consisting of 23 metastatic 

melanoma patients, TabNet performs nearly identically to PureCN, both overall (better by 0.7%) 

and for SNVs (better by 0.6%) but PureCN’s performance is substantially better on indels by 

21.4%, with 153 fewer false positives than TabNet and only 12 fewer true positives.  

Next, we compared the amount of time elapsed to make somatic/germline predictions starting 

from annotated tumor-only VCFs.   Compute time of TabNet (mean 133.7 seconds) on a single 

core was 9.6 times faster than PureCN’s (1287.3 seconds, p << 0.001) using 250 cores (Figure 

4B).   This dramatic speed improvement over PureCN is not surprising as Bayesian methods 

are known to require intense CPU resources. 

 

Global feature importance 

We inspected the global feature importances of our trained classifier.  The top 30 out of 56 total 

features are shown in Figure 5A. The maximum population allele frequency across multiple 

germline databases (pop_max) is the most important feature, with an importance score of 0.49. 

The next most important features are t_maj_allele (the greatest VAF among all observed alleles 
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at the variant’s locus, 0.13), max_cosmic_count (number of times the variant is observed in 

COSMIC, the catalog of somatic mutations in cancer(Tate et al. 2019), 0.12), t_alt_freq (the 

VAF of the mutant allele, 0.09), snp_vaf_bin_00 (the number of neighboring heterozygous SNPs 

with VAF between 0.0 and 0.05, 0.022), and count (the total number of variants to classify in the 

sample containing the variant, 0.019).   All features are variant-specific except count, which has 

the same value across all variants in each patient.  inframe_indel (importance = 0.0090) is the 

only ontology-related feature in the top 30.  The remaining features in the top 30 are from either 

the snp_vaf_bin class of features or are related to the mutational spectrum.  The snp_vaf_bin 

features (derived from binning the VAFs of neighboring heterozygous common SNPs) together 

add up to 0.067.  The features characterizing the mutational spectrum--substitutions such as 

C>G and trinucleotide contexts like TTG -- together add up to a feature importance of 0.066.   

Together, these features are reasonably ordered, with pop_max being the most important, and 

allele fraction and COSMIC features near the top.  A surprise is the low feature importance of 

the nonsense ontology.  This is a surprise because nonsense mutations are expected to occur 

more commonly as somatic mutations than as germline variants.  Indeed, 63% of the nonsense 

variants in our test set are truly somatic whereas for all variants in our test set, the truth labels 

are 49% somatic and 51% germline.   The ontology features including missense, nonsense, and 

inframe_indel add up only to 0.009.  But otherwise, the global feature importances for TabNet 

appear to be well-ordered.    

Explaining variability in performance 

Using multiple regression models, we explain individual performance as a function of several 

predictor variables.  We observed that the most influential factor on a sample’s positive 

predictive value (PPV) is the “true” TMB coming from germline subtraction via the matched-

normal pipeline.  Samples with lower TMB tend to have a lower PPV (R2 = 0.54, Supplemental 
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Figure 2), so a paucity of true somatic mutations in a sample contributes to a low PPV.  We 

suspected that a small proportion of germline variants appear somatic based on low variant 

allele fraction (VAF) leading to a constant level of false positives. Supporting this, the median 

VAF of false positive (FP) and true negative variants (TN) was 0.35, and 0.50, respectively.    

The interpretable feature masks of the TabNet architecture allow us to explain explicitly which 

features contribute most to these false positive calls. By examining the feature masks, which 

indicate where the TabNet neural network is allocating its attention for each classification 

instance, we see surprisingly that the VAF (t_alt_freq) is not the most distinguishing feature 

between FPs and TNs.  Rather, it is the COSMIC count (max_cosmic_count, the number of 

times the variant is observed in COSMIC) and the overall count of mutations (count variable) 

that best distinguish somatic and germline predictions, with differences being present in the first 

feature mask layer (Figure 5B).  Illustrating the explanatory utility of these feature masks, we 

found the proportion of variants with a nonzero max_cosmic_count was significantly greater for 

FPs than for TNs (p < 0.00001, Fisher’s exact test), with 993 out of 5397 for FPs (18%) and 

3612 out of 25962 (14%) for TNs, and further, the mean max_cosmic_count values was lower 

for FPs ( 0.99) than for TNs (0.26), p << 0.001 (Wilcoxon rank sums test).  We also found that 

the number of mutations to classify (count variable, rare germline SNPs + true somatic 

mutations in the sample) was greater in FPs (3390) than for TNs (2287), p << 0.001.  Thus, 

significant differences are found between correctly and incorrectly classified germline variants 

for both features.  Together this exemplifies how the feature masks of TabNet help with 

interpreting classifications. 

Considering FPs, TNs, alongside true positives and false negatives, as shown in Figure 5B, the 

attention of the TabNet classifier is consistently applied to max_cosmic_count for all mutations 

classified as somatic (TP + FP), and to count for all variants classified as germline (TN + 

FN).  Limited interpretability is a common and valid criticism of non-attention-based deep 
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learning models, but attention-derived insights such as those presented here and by 

others(Chen et al. 2020) offer a way to interrogate deep learning models and avoid reliance on 

predictions from “black box” neural networks.  

The sensitivity (TPR) of our model is best explained by the median VAF of the true somatic 

mutations (MVTSM), a metric that can be interpreted as an approximation for tumor purity 

divided by 2 (Supplemental Figure 3).  The regression model for TPR with MVTSM as the sole 

predictor has the following parameters: R2 = 0.4, β0(y-intercept) = 0.99, β1(slope) = -0.89.  Thus, 

the following approximation predicts the TPR of our model: 

!"#$%$&$'$()!*(+ 

Another interpretation is that the TPR increases with increasing stromal fraction, the so-called 

“contaminating normal tissue” in the biopsy.   Covariance analysis of TPR vs MVTSM across 

indications identified GBM, melanoma, and BLCA as the tissue types in our datasets where this 

relationship is strongest (Supplemental Figure 4).  

 
Impact of racially biased germline databases in tumor-only variant calling 

The presence of racial biases in genomic databases has widespread negative implications in 

human genome science and has been the subject of intense criticism(Popejoy and Fullerton 

2016; Bentley, Callier, and Rotimi 2020).   Tumor-only variant calling is no exception(Halperin et 

al. 2017).  A recent study observed that the inflation of TMB caused by the absence of a 

matched normal sample is most severe in underrepresented minorities(Asmann et al. 2021). 

Comparing the “true” matched-normal TMBs of the 12 Black patients and 55 White patients in 

the TCGA validation set and hold-out test set, we see no statistical difference in TMB between 

the two groups (p > 0.05, Wilcoxon test) (Figure 6A). In the absence of a matched normal 

sample, however, the difference is profound (p << 0.001) with median tumor-only TMBs of 
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Blacks (30.36) being almost three times as high as that for Whites (11.15) (Figure 6B).   After 

applying TabNet’s somatic germline classifications, the corrected median TMBs for Blacks and 

Whites are 3.43 and 1.85, respectively.  The TabNet-corrected tumor-only TMB calculation for 

Blacks is still somewhat over-inflated, but the TMB difference of ~1.6 between Black and White 

patients constitutes a dramatic reduction of bias relative to the TMB difference of ~19 seen with 

the naive tumor-only method (Figure 6C).  

Discussion 

We constructed and trained an attentive deep learning classifier to distinguish somatic 

mutations from rare germline variants. Our model was trained on seven cancer subtypes 

sequenced by the Broad Institute with a single exome capture kit. This trained model 

generalizes to two distinct capture kits and seven distinct cancer subtypes in the validation and 

two blind hold-out sets.  TabNet outperforms PureCN in both speed and accuracy.  TabNet 

predictions confer agreement between matched and tumor-only TMB calculation, with a fold 

improvement as much as 44 over the naive method and a slope within 20% of 1.0, enabling 

reliable somatic mutation retrieval in tumor-only variant calling and harmonization of TMB 

calculation in cohorts of mixed tumor-only and matched-normal WES samples.   

The performance metrics reported in this study are for a model trained on seven cancer 

subtypes and a single exome capture kit and sequencing center.  A model trained on more 

diverse input data should generalize better than ours, and we expect our reported performance 

to increase with training set size and diversity.  Training on a dataset with tumors of different 

subtypes, purity, ploidy, copy-number profiles, and mutational spectra, as well as multiple WES 

data sources will likely improve performance of a model applied to a cohort of contrasting 

biology and technical data quality.  Conversely, analyzing a homogenous cohort (e.g., from a 

single cancer subtype) might benefit from training on a similar cohort, especially if including 
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features like nucleotide substitution. In cohorts with a mix of matched-normal and tumor-only 

samples, it is possible to estimate the performance on the tumor-only subset in a way akin to 

the methodology outlined in this work, by running parallel matched-normal and tumor-only 

variant-calling pipelines on the matched-normal subset and evaluating the resultant 

classifications with the matched-normal truth labels. 

Because the TabNet architecture was designed for tabular data, TabNet could be applied to a 

wide range of other tasks in genomics.  It has been shown to outperform XGBoost in multiple 

classification tasks(Arik and Pfister 2019) and can be used for regression and multi-label 

classification. As we have demonstrated, TabNet’s feature masks enable interpretation of 

classification results.  This is not possible with non-attentive deep learning methods(Chaudhari 

et al. 2019).  The extent to which attentive models offer faithful explanation of predictions has 

been debated, working in some contexts and not others(Jain and Wallace 2019; Wiegreffe and 

Pinter 2019; Serrano and Smith 2019), but in this work, we see clear concordance between the 

values in the feature masks and statistical differences in the data. 

For somatic mutation calling with DNA sequencing data, we expect no algorithm will ever be as 

good as having the matched normal.  One can imagine a perfectly clonal, diploid tumor without 

copy number alterations and without any contaminating normal tissue (100% purity).  In this 

hypothetical tumor, the variant allele fraction of somatic mutations would be distributed 

identically to the germline variants. Somatic mutations may exhibit characteristic genomic 

distribution and nucleotide substitution patterns(Alexandrov and Stratton 2014; Milholland et al. 

2017), offering modest advantage for somatic vs germline classification in some tumor-types. 

Yet, without a substantial fraction of normal stromal tissue in the bulk WES biopsy, we expect 

methods based partly on VAF statistics such as ours will never perform as well as having the 

matched normal sample.  
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A major limitation in human genomics and precision medicine is that not all subpopulations are 

well-represented in genomic studies(Popejoy and Fullerton 2016).  Human germline variant 

databases predominantly consist of subjects of White European ancestry, and this bias 

diminishes the reliability of naive tumor-only variant calling methods for Blacks relative to 

Whites(Asmann et al. 2021; Halperin et al. 2017). By integrating multiple informative features 

such as COSMIC and germline databases, variant allele fractions, and the local copy number 

ratios of known heterozygous germline SNPs, we can reduce much of this racial bias.  We 

suspect this benefit conferred by our approach will improve further as germline variants from 

racial minorities become more represented in large genomic databases. 

 
Materials and Methods 

   

TCGA genomic data acquisition 

Manifest files for downloading TCGA genomics data were generated using the TCGA-

Biolinks(Colaprico et al. 2016) R package.  15 Patients for each indication were selected from 

TCGA randomly, conditioned on the patient having a single tumor-sample and single normal 

sample. 15 acute myeloid leukemia samples were originally included in the training set but were 

removed due to the presence of somatic mutations in the normal sample.   BAMs were 

downloaded from GDC using the GDC Data Transfer tool.  The samtools “collate” command 

was used prior to extracting FASTQs from the GDC BAMs.  

  

Hugo et al. metastatic melanoma WES data acquisition 

Sequencing data from 23 metastatic melanoma patients sequenced at UCLA were downloaded 

from SRA using SRA toolkit and the command fastq-dump -split-3 –gzip $SRR.  The 23-sample 

subset was chosen because it had available capture kit metadata. 
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Alignment 

 FASTQs were aligned to hg38 using the Sentieon implementation of BWA-MEM(Freed et al. 

2017).  We used a consistent bioinformatics approach across all batches and cohorts. 

  

Panel of normals construction 

 A panel of normals is routinely used in whole exome sequencing analysis to filter out germline 

SNPs and alignment and technical artifacts inherent to the capture-kit choice.   It is also used for 

CNV analysis – the germline copy number of many samples are used to capture-kit-specific 

depth biases.   A leave-one-out panel of normals strategy was chosen to maximize the number 

of normal samples available for training.  A further benefit of the method is it ensures that the 

racial demographics of the normal samples in the panel are representative of the cohorts used 

in training and evaluation. 

A separate leave-one-out panel of normals was constructed for each of the 195 TCGA patients 

in this study.  For a given capture kit with N patients sequenced, the leave-one-out approach is 

as follows:  for each of the N patients, gather the N -1 normal samples from every other patient, 

and use these N - 1 normal samples to create both the CNV log2-copy number reference and 

normal panel VCF (VCF panel of normals).  This strategy is analogous to leave-one-out cross-

validation.   The CNV and VCF panel of normals from TCGA data were matched with the 

capture kit of the tumor samples.  For the 23 metastatic melanoma samples, CNV and VCF 

normal panels were both derived from a randomly chosen patient from the Nimblegen SeqCap 

EZ Exome v3 sequenced TCGA cohort. 

  

Variant level panel of normals construction. 

BCFtools(Danecek et al. 2021) and the merge command was used to aggregate the germline 

VCFs of the N-1 normal samples.  All identified variants occurring in at least two of the samples 

were added to the normal panel VCF. 
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Copy Number panel of normals construction 

CNVkit(Talevich et al. 2016) output .cns files that were aggregated using the command.  The 

bins were specified using the capture kit’s baits BED file, lifted over from hg19 to hg38 with the 

UCSC LiftOver tool.  

  

Copy number calling 

We used CNVkit to generate log2 copy number ratios and segments using the circular binary 

segmentation algorithm.  Batch mode for single TCGA samples the leave-one-out panel of 

normal were used.  For the Hugo melanoma cohort, batch mode was also used, with the CNV 

panel of normals from a randomly chosen TCGA patient. 

 
cnvkit.py batch $tumor -r $pon -p $procs_per_job --output-dir $sample 

cnvkit.py call $sample/$sample\_tumor.cns -o $sample/$sample.call.cns 

  

 
Variant Calling 

Sentieon’s TNScope(Freed, Pan, and Aldana 2018) was applied to the hg38-aligned BAMs and 

the capture-kit-matched panel of normals.  No patient-matched normals were included in the 

process-matched panel of normals.     SnpSift v4.3 added dbSNP(Sherry et al. 2001) build 151 

and COSMIC(Tate et al. 2019) v85 annotations to all VCFs with the following command: 

SnpSift Annotate -a $COSMIC_VCF $SNP_EFF_ANNOTATED_VCF 

  

dbNSFP4.0(Liu et al. 2020) was used to annotate variants with databases such as 1000 

Genomes(1000 Genomes Project Consortium et al. 2015) and ExAC(Lek et al. 2016).  We 

constructed ‘pop_max’, a single aggregate feature derived from dbNSFP for filtering and the 

machine learning model.  pop_max, calculated by taking the maximum population allele 
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frequency across the following dbNSFP databases: 1000Gp3_AF, TWINSUK_AF, ALSPAC_AF, 

UK10K_AF,ExAC_AC,ExAC_AF,gnomAD_exomes_AF, gnomAD_genomes_AF. 

 

Variant filtering 

A set of criteria was chosen for pre-filtering variants such that artifacts and common germline 

SNPs are eliminated before applying training or applying the tumor-only classifier.  These 

eliminated variants do not count as true negatives, thus our specificity and NPV are calculated 

conservatively.    The criteria isolated passing, coding mutations for all tumor-only variant calls 

and is as follows:  population allele frequency < 0.01 across the 8 germline databases, 

SnpEff annotation ontology in missense, nonsense, frameshift_indel, inframe_indel, FPfilter == 

‘PASS’, Sentieon TNScope filter == ‘PASS’.  

FPfilter(Koboldt et al. 2012) eliminated sequencing and alignment artifacts.   TNScope filter 

flags likely sequencing errors (using the t_lod_fstar of Mutect 2) as well as artifacts and 

germline mutations identified with the process-matched panel of normals.  We discarded these 

variants and kept only the variants that we’d consider to be somatic coding mutations.  

  

PureCN 

We ran PureCN using the production configuration recommended in the official 

documentation.  For input we used the COSMIC and dbSNP-annotated tumor-only VCFs after 

removing artifacts from the VCFs using bcftools (TNScope filter == ‘PASS’).  used with 

PureCN.  normalDB was constructed for every PoN VCF used in this study with the command 

Rscript $PURECN /NormalDB.R --outdir $out_dir --normal_panel $pon_vcf --assay $patient_id 

+ --genome hg38 --force 

 

The copy-number ratio .cnr files from CNVkit were converted to segmentation files (.seg) using 

the `cnvkit export` command.  The hg38_simple_repeats.bed file was downloaded from UCSC 
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to blacklist SNPs in tandem repeat regions(Benson 1999).   250 cores were used per sample 

and the “—postoptimize” flag was turned on.   The full command is as follows: 

Rscript $PURECN --version; Rscript $PURECN --out $out_dir --sampleid $patient_id --tumor 

$COPY_NUMBER_RATIO --segfile $seg_file --mappingbiasfile $normal_db --vcf $vcf --

snpblacklist $simple_repeats --genome hg38 --parallel --cores 250 --funsegmentation Hclust --

force --postoptimize --seed 123 

  

 
Comparing TabNet and PureCN 

 Unfiltered variants from our variant calling pipeline were merged with the classified variants 

from PureCN.  Variants were subsequently filtered using the same criteria and thresholds that 

we applied to isolate coding somatic mutations, including the TNScope filter, FPFilter, coding 

mutation ontology, and population database frequency.  TabNet predictions were merged, and 

call rate was assessed for TabNet and PureCN by calculating the number of variants with 

posterior somatic probability predictions.  True positives were defined as: somatic mutations 

correctly classified as somatic, false positives: rare germline variants misclassified as somatic, 

false negatives:  true somatic mutations misclassified as germline, true negatives: rare germline 

variants correctly classified as germline. 

  

TabNet training 

The open-source repository PyTorch TabNet (https://github.com/dreamquark-ai/tabnet) was 

adapted for, with PyTorch version 1.7.0.  

The following model hyperparameters were used to build a TabNet network:  n_d = 24, n_a = 

24, n_steps = 4, gamma = 1.5, n_independent 2, n_shared = 2, lambda_sparse = 0.0001, 

momentum = 0.3, clip_value = 2. 
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Training was achieved for 100 epochs, using the Adam Optimizer with a learning rate of 0.02, 

and a batch size of 4000 and virtual batch size of 256.   Although TabNet does not require 

categorical features to be one-hot-encoded, we did this to allow for more flexibility with other 

machine learning models, such as a random forest.  A custom loss function was designed to 

maximize the average precision score (the area under the precision recall curve).     We trained 

the model for a total of 100 epochs, after which we selected the model from the epoch with the 

best performance on the validation set. We repeated the train-validate-test process three times 

to ensure reproducibility of this training strategy.  Training completed in less than 2 hours on the 

CPU, and approximately 15 minutes using GPU acceleration with NVIDIA P100.   GPUs were 

not used for the time benchmark comparison for TabNet and PureCN.   

 
Regression and covariance analysis.  

Linear regression and covariance calculations were calculated using the R computing 

environment, version 3.5.2. To calculate quartiles in Supplemental Figure 4A., we used 

bootstrap sampling with 1000 bootstrap replicates.  

 
TMB calculation 

There is no consensus on how to normalize TMB, i.e., whether to use the size of the exome in 

the human genome or the size of the regions targeted by the exon capture kit. Often the TMB is 

presented without normalizing.  We obtained exon target .BED files for the three capture kits in 

this study from the manufacturer websites.  We used the UCSC liftOver tool to convert them 

from hg19 to hg38.  The total footprint of the exon targets from SeqCap EZ HGSC VCRome, 

and Nimblegen SeqCap EZ Exome v3 kits, was 33.0, 37.3, and 63.5 megabases, 

respectively.  Since we used three distinct exon capture kits in this study, for simplicity we 

decided to normalize the total somatic mutation count across all datasets by dividing by a 

constant factor:  41, corresponding to the patient-weighted average of the three kits’ target 

footprint size in megabases. 
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Code Availability 

This tumor-only somatic-germline classifier was written in Python.  All code including feature 

engineering and model training and evaluation is available at https://github.com/AbbVie-GRC-

Methods-Dev/new_normal and is usable under the MIT license. 
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Figure 1). Methodology: somatic vs germline prediction using supervised learning.  To 
improve the reliability of tumor-only variant calling in whole exome sequencing (WES) samples, 
we classify mutations as ‘somatic’ or ‘germline’ using TabNet, an attentive deep learning 
classifier for tabular data.   We train TabNet on solid tumor data in a supervised manner, using 
features from a tumor-only analysis and truth-labels derived from a matched-normal analysis. 
We evaluate the trained model blindly on hold-out tumor sample data that is biologically and 
technically distinct from the training set data– i.e., from different tissues of origin, exome 
capture-kits, and sequencing centers.   Classifier Training (left): To prepare the training set, we 
first align WES data for tumor and matched normal samples from 105 oncology patients in The 
Cancer Genome Atlas across 7 studies (BLCA = Bladder Urothelial Carcinoma, GBM = 
Glioblastoma Multiforme, HNSC = Head and Neck Squamous Cell Carcinoma, LUAD = Lung 
Adenocarcinoma, LUSC = Lung Squamous Cell Carcinoma, OV = Ovarian Serous 
Cystadenocarcinoma, STAD = Stomach Adenocarcinoma). For all patients, variant calling is 
performed with and without the matched normal reference.   CNV analysis is performed 
without the matched normal samples.  We extract features from the tumor-only variants and 
CNV data.  The somatic or germline status of each variant detected in the matched normal 
variant calling pipeline is used as the ground truth label--0 for germline and 1 for somatic.   We 
combine the features and truth labels to train a TabNet classifier to distinguish somatic from 
germline variants.  Validation and Testing (right):   The model with the best recall and precision 
on a validation set (COAD, DLBC, and TGCT, SeqCap EZ HGSC VCRome, Baylor College of 
Medicine) is selected and applied to two hold-out test datasets of tumor-only samples:  TCGA 
BRCA, SARC, and UCEC, and the metastatic melanoma data set of Hugo et al., (2016), using the 
Nimblegen SeqCap EZ Exome v3 kit.  Accuracy and run-time of the tumor-only classification 
method are benchmarked using truth labels from the associated matched-normal pipeline. 
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Method Dataset 
Variant 
category AUC Sensitivity Specificity 

Positive  
predictive  
value 

Negative  
predictive  
value 

F1-
score 

Balanced 
accuracy FP TP FN TN 

Total  
classified  
variants Call rate 

TabNet Blind test set - BRCA SARC 
UCEC Overall 0.942 0.931 0.828 0.839 0.926 0.883 0.879 5397 28184 2086 25962 61629 100 

  SNVs 0.945 0.943 0.827 0.843 0.937 0.89 0.885 5199 27918 1675 24923 59715 100 

  Indels 0.784 0.838 0.624 0.515 0.89 0.638 0.731 662 703 136 1100 2601 100 

 
Blind test set - metastatic 
melanoma Overall 0.852 0.797 0.753 0.799 0.751 0.798 0.775 3176 12598 3215 9695 28684 100 

  SNVs 0.85 0.796 0.749 0.8 0.744 0.798 0.773 3114 12490 3198 9298 28100 100 

  Indels 0.82 0.837 0.619 0.346 0.94 0.489 0.728 233 123 24 378 758 100 
PureCN Blind test set - BRCA SARC 

UCEC Overall 0.85 0.662 0.912 0.882 0.729 0.756 0.787 2237 16792 8588 23065 50682 82.2 

  SNVs 0.851 0.662 0.913 0.887 0.724 0.758 0.788 2082 16343 8360 21983 48768 81.7 

  Indels 0.827 0.606 0.893 0.756 0.805 0.673 0.749 132 410 267 1105 1914 73.6 

 
Blind test set - metastatic 
melanoma Overall 0.824 0.789 0.732 0.794 0.726 0.791 0.76 2951 11340 3041 8050 25382 88.5 

  SNVs 0.823 0.788 0.729 0.797 0.717 0.792 0.758 2856 11228 3028 7686 24798 88.2 

  Indels 0.887 0.888 0.826 0.581 0.964 0.703 0.857 80 111 14 379 584 77 
 
 

Table 1) Benchmark accuracy metrics for somatic vs germline classification by TabNet and 
PureCN.  Overall performance considers all single-nucleotide variants (SNVs) and indels. TP: 
true positives – somatic mutations correctly classified as somatic.  FP:  false positives; rare 
germline variants misclassified as somatic mutations.  FN: false negatives – somatic mutations 
misclassified as germline variants.  TN: true negatives – rare germline mutations correctly 
classified as germline.   Call rate – percentage of total coding variants classified. 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 2) Classifier’s patient-level performance stratified by tissue type.  A) Four accuracy 
metrics for TCGA datasets.  n = 15 randomly selected cancer patients per tissue type. TabNet 
deep learning classifier trained on BLCA, GBM, HNSC, LUAD, LUSC, OV, STAD studies, all with 
Agilent Custom V2 exome capture kit (left), validated on COAD, DLBC, and SARC studies, with 
SeqCap EZ HGSC VCRome capture kit (center, n = 45), and tested on BRCA, SARC, and UCEC 
Nimblegen SeqCap EZ v3 capture kit (right, n = 45).  B) Four accuracy metrics for the Hugo 
metastatic melanoma data set (23 cancer patients sequenced by UCLA). 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3) Concordance of Tumor Mutational Burden (TMB) calculated with and without 
matched normals. Training set, n = 105; Validation set, n = 45; Test set, n = 45 patients.  A) 
Matched-normal TMB compared to TMB calculated by naïve tumor-only approach – variants 
are filtered by removing common germline variants using multiple population germline 
databases and a process-matched leave-one-out panel of normals.  B) Matched-normal TMB 
compared to TMB calculated with TabNet-predicted somatic mutations. β1 indicates the slope 
of linear regression fit.   
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Figure 4: Comparison between PureCN and TabNet on TCGA holdout test set.  A) Receiver 
operating characteristic (ROC) curve calculated for both TabNet and PureCN, treating somatic 
mutations as positives and germline variants as negatives.  Curves display 500 distinct posterior 
probability thresholds for classification, selected by binning the probabilities into 500 quantiles. 
B) Run-time comparison in seconds. (PureCN, 250 CPUs per sample), TabNet 1 CPU per sample, 
no GPU) 
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Figure 5: Global and local feature importance for trained TabNet somatic vs germline 
classifier. A) ranked global feature importance.   pop_max: maximum population frequency of 
variant across multiple germline databases, t_maj_allele: the fraction of reads containing the 
most supported allele at that locus in the sample, max_cosmic_count: the number of 
occurrences of variant in COSMIC somatic database, t_alt_freq: the fraction of reads supporting 
the alternate allele, snp_vaf_bin_i: the number of informative SNPs in the copy-number 
segment with a VAF between i/20 and (i+1)/20, count: the total number of variants to classify in 
that sample,, ACC, CTT, etc: trinucleotide context, non-SBS-y:  non single-base substitution so no 
trinucleotide context applies. B) TabNet’s feature masks explain how the neural network 
allocates its attention during classification.  For each of the four categories – true positives 
(left), false positives (top right), false negatives (bottom left), true negatives (bottom right) – 50 
variants are randomly selected from the TCGA hold out test set.  Only the first 3 feature masks 
are shown, and only the first 5 variables are shown.    
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Figure 6: Impact of racial bias in germline databases on Tumor Mutational Burden (TMB) 
estimates in tumor-only WES samples. Each panel displays patients from TCGA validation and 
hold-out test sets, n = 12 Black and 55 White patients.     A) True TMB from matched normal 
pipeline.   B) TMBs without matched normal samples, using multiple germline population 
databases and a process-matched leave-one-out panel of normals (naïve tumor-only method).   
C) TabNet-corrected tumor-only TMBs. 
 
 
 
 
 
 
 
 


