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Lucian Visan,4 Michele Ceccarelli,5,6 Michael Poidinger,1 Alfred Zippelius,3 Jo~ao Pedro de Magalh~aes,2,*
and Anis Larbi1,7,8,9,*
1Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, 138648,

Singapore, Singapore
2Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L78TX, UK
3Department of Biomedicine, University Hospital and University of Basel, 4031 Basel, Switzerland
4Sanofi Pasteur, Marcy l’Etoile, France
5BIOGEM Research Center, Ariano Irpino, Italy
6Department of Science and Technology, University of Sannio, Benevento, Italy
7Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis, Tunisia
8Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC, Canada
9Department of Microbiology, Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore,
Singapore, Singapore
10Lead Contact

*Correspondence: mongianni1@gmail.com (G.M.), jp@senescence.info (J.P.d.M.), anis_larbi@immunol.a-star.edu.sg (A.L.)

https://doi.org/10.1016/j.celrep.2019.01.041
SUMMARY

The molecular characterization of immune subsets is
important for designing effective strategies to under-
stand and treat diseases. We characterized 29 im-
mune cell types within the peripheral blood mononu-
clear cell (PBMC) fraction of healthy donors using
RNA-seq (RNA sequencing) and flow cytometry. Our
dataset was used, first, to identify sets of genes that
are specific, are co-expressed, and have house-
keeping rolesacross the29cell types.Then,weexam-
ined differences in mRNA heterogeneity and mRNA
abundance revealing cell type specificity. Last, we
performed absolute deconvolution on a suitable
set of immune cell types using transcriptomics
signatures normalized by mRNA abundance. Abso-
lutedeconvolution is ready touse for PBMC transcrip-
tomic data using our Shiny app (https://github.com/
giannimonaco/ABIS). We benchmarked different de-
convolution andnormalizationmethods and validated
the resources in independent cohorts. Our work has
research, clinical, and diagnostic value by making it
possible to effectively associate observations in bulk
transcriptomics data to specific immune subsets.

INTRODUCTION

The cellular heterogeneity of the immune system is essential for

generating diverse and targeted immune responses. Because of

ease of isolation and minimal invasiveness, investigations of the

immune system are often limited to peripheral blood mononu-

clear cells (PBMCs). Vast amounts of transcriptomic data have
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been generated from the PBMC fraction (Corkum et al., 2015;

van Leeuwen et al., 2005; de Mello et al., 2012; Miao et al.,

2013); however, studying PBMCs in their entirety often contrib-

utes to results that are inconclusive or difficult to interpret, as it

not always possible to accurately ascertain which specific im-

mune cell types are responsible for any given transcriptomic

signal of interest. Moreover, the proportion of immune cell sub-

sets in the blood can vary during disease, age, or clinical inter-

ventions (vaccines and drugs), and these differences go unde-

tected in the absence of data on immune cell composition.

A deconvolution approach can be an effective solution to

discern specific immune cell type proportions from transcrip-

tomic data of heterogeneous samples. Various deconvolution

methods have been developed in the past decade (Shen-Orr

and Gaujoux, 2013). Abbas et al. (2009) initially developed a de-

convolution method that imposes two constraints on linear

modeling (LM): sum to 1 and non-negativity (NNLM). A second

approach is based on quadratic programming (QP) and was

originally developed for microarray and later adapted for RNA

sequencing (RNA-seq) data (Gong and Szustakowski, 2013;

Gong et al., 2011). Newman et al. (2015) developed a method

on the basis of support vector regression (SVR) that is more

robust to noise and multicollinearity. More recently, several mi-

croarray datasets were collected to generate a signature matrix

that is more robust to the gene expression platform used and in-

dividuals’ health conditions (Vallania et al., 2018),

Although the field of gene expression deconvolution has

steadily grown since the first work reporting it (Lu et al., 2003),

there are still several open questions that need to be addressed.

First, deconvolution methods have been tested using mainly

microarray data, which present limits in terms of signal resolu-

tion. RNA-seq data are increasingly becoming available for

many immune cell types, but to our knowledge, there is no single

comprehensive resource that encapsulates all the immune cell
eports 26, 1627–1640, February 5, 2019 ª 2019 The Authors. 1627
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types of a heterogeneous immune sample together with ground-

truth proportions needed for validation. Second, existing decon-

volution methods rely on applying constraints in order to obtain

absolute proportions instead of exploring different normalization

strategies. Current normalizationmethods generally assume that

cells have similar mRNA composition, and this can erroneously

reduce or inflate deconvolution estimation for very different cells

types. The cells composing the immune system show strong

morphological and phenotypical differences, but their mRNA

composition has not been examined in a systematic way yet.

Third, previous works assumed that any cell type can be poten-

tially deconvoluted. However, there are resolution limits imposed

by the gene expression platform used and by the cell typemRNA

landscape that have not been explored yet.

Here, we generated an RNA-seq gene expression profile of 29

immune cells constituting the PBMC fraction, together with fluo-

rescence-activated cell sorting (FACS) proportions and gene

expression of PBMCs. Transcriptomic analyses were performed

to validate the dataset and to generatemodules of genes that are

specifically expressed in a cell type, co-expressed indepen-

dently of cell lineage, and with housekeeping (HK) activity.

Next, the mRNA composition in terms of abundance and hetero-

geneity was explored for our immune cell types. Last, we devel-

oped a normalization approach accounting for mRNA abun-

dance that makes it possible to derive absolute proportions.

We generated normalized signature matrices for a set of immune

cell types that were found to be suitable for RNA-seq and micro-

array deconvolution of PBMC samples, respectively. Absolute

deconvolution of external PBMC datasets can be directly

applied using the Shiny app (https://github.com/giannimonaco/

ABIS). The resources generated in this study will allow the

dissection of molecular signatures at fine resolution and to quan-

titatively assess other state-of-the-art deconvolution methods.

RESULTS

Detailed Characterization of 29 Immune Cell Types and
PBMCs
Blood samples from four Singaporean individuals (S4 cohort)

consisting of 29 immune cell types were sorted for transcrip-

tomic profiling by RNA-seq. In addition, PBMC samples from a

cohort of 13 Singaporean individuals (S13 cohort) were collected

for PBMC transcriptomic profiling and flow cytometry-based im-

munophenotyping of the 29 immune cell types used for RNA-seq

(Figures 1 and S1; STAR Methods; Table S1). The PBMC tran-

scriptomic profiling of the S13 cohort was obtained by both

RNA-seq and microarray technology in order to perform abso-

lute deconvolution for both platforms.

The 29 immune cell types for this study were selected on the

basis of their unique functionality and importance. The choice

was also made with the aim of assigning each immune cell to a

single cell type so that merging all the different cell types would

reconstitute a complete PBMC sample. The 29 cell types

included subsets of CD4 T cells (n = 8), CD8 T cells (n = 4) and

B cells (n = 5), unconventional T cells (n = 3), natural killer (NK)

cells (n = 1), monocytes (n = 3), dendritic cells (DCs) (n = 2),

low-density (LD) granulocytes (n = 2), and progenitor cells

(n = 1) (see STAR Methods for more details). The cell type with
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the lowest abundance was CD34+ hematopoietic progenitor

cells (HPCs) (0.12%). See Table S1 for the mean and SD of the

percentages of all cell types.

Transcriptomics Analyses and Resources
In this section, we show various transcriptomics analyses to vali-

date our dataset and to generate modules of immune-related

genes which can be useful for future works.

Dimensionality Reduction and Clustering

We explored the ontogeny and relationships among the 29 im-

mune cell types by applying dimensionality reduction and clus-

tering algorithms to transcripts per million (TPM) expression

values (Figures 2 and S2). The t-distributed stochastic neighbor

embedding (t-SNE) analysis showed that for some cell types

(progenitors, plasmablasts, LD neutrophils, LD basophils, and

plasmacytoid DCs [pDCs]), samples obtained from different indi-

viduals grouped so closely that only one dot was visible in the

plot (Figure 2A). The naive compartments of CD4 and CD8

T cells showed high similarity, and they clustered more closely

together than with their corresponding memory subsets (Figures

2B and S2B). The T cell memory subsets formed two separate

clusters: the CD4 T terminal effector (TTE) aggregated with the

CD8 T effector memory (TEM) andCD8 TTE, and the CD8 T central

memory (TCM) aggregated with the remaining CD4 T memory

subsets (Figures 2A1, 2A2, S2A1, and S2A2). A closer look at

the expression of genes related to degranulation activity, namely

granzyme B (GZMB) and perforin (PRF1), revealed higher

expression levels in CD4 TTE compared with other identifiable

CD4 T cell memory subsets, in accordance with previous results

(Marshall and Swain, 2011).

The memory subtypes of T and B cells and intermediate (I) and

non-classical (NC) monocytes showed poor specificity. Hierar-

chical clustering revealed that the gene expression signatures

of these subtypesweremore strongly influenced by inter-individ-

ual variability than by cell type differences (Figure S2B). A func-

tional enrichment analysis revealed that the genes mainly

responsible for individual variability were related to viral infection

and type II interferon signaling.

Modules of Cell Type-Specific Genes

Cell type-specific genes were retrieved using both TPM and

TPMTMM values. The TPM values highlight the difference in

gene expression proportions; the TPMTMM gene expression

values show the change in expression relative to a core set of

genes. The differentially expressed genes (DEGs) were retrieved

on the 29 cell types chosen for FACS and also on broader cell

types (Table S2).

Modules of cell type-specific genes were found by clustering

the genes from the differential expression analysis (STAR

Methods; Table S2). The heatmap of DEGs (Figures 3 and S3;

Table S3) on the basis of TPM values confirms the quality of

the transcriptomic data, as almost all cell types were enriched

for their respective Gene Ontology (GO) terms. DEGs detected

on the basis of TPMTMM values (false discovery rate [FDR] <

0.05) were used to perform an enrichment analysis of gene

sets from the Reactome database (Table S3). An example of sig-

nificant pathways includes the enrichment of the mitotic cell cy-

cle genes for plasmablasts and the downregulation of non-cod-

ing RNA activities for LD neutrophils (Table S3).
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Figure 1. Representation of the Sample Preparation and Data Collection

PBMC aliquots from two cohorts were used for (1) RNA-seq of 29 immune cell types (S4 cohort) and (2) microarray and RNA-seq of PBMCs and im-

munophenotyping of the 29 immune cell types (S13 cohort). Four staining panels (panels 1–4) were used to sort and immunophenotype the 29 immune cell types

(Table S1).

Tfh, T follicular helper; Tregs, T regulatory; Th, T helper; CE, central memory; EM, effector memory; TE, terminal effector; MAIT, mucosal-associated invariant T;

SM, switched memory; NSM, non-switched memory; Ex, exhausted; LD, low-density; C, classical; I, intermediate; NC, non-classical; mDCs, myeloid dendritic

cells; pDCs, plasmocytoid dendritic cells.

See also Table S1 for full name and markers information.
Modules of Co-expression Genes

We also retrieved modules of co-expressed genes (STAR

Methods), which gather genes with similar expression patterns

independently of cell type specificity (Figures S3 and S4). For

each module we show the distribution of the connectivity values

in Figure S3E. Some modules include genes broadly expressed

in all or almost all cell types because they exert basic cell func-

tions. For example, modules 8, 3, 11, and 7 are associated

with transcriptional activity, and in addition, they have been

found to be significantly enriched for transcription factors and

co-factors listed in the AnimalTFDB (Zhang et al., 2015). Other

modules include genes that exert a more specific immune func-

tion that can be carried out by multiple immune cell types. For

example, module 13 is associated with antigen processing and

presentation, which is done by B cells, monocytes, and DCs.

Immune Cell-Specific HK Genes

We explored the expression of HK genes retrieved from three

publicly available lists (Eisenberg and Levanon, 2013; Hsiao

et al., 2001; Tirosh et al., 2016). Although the overall SD of

these HK gene lists was lower than the SD of the remaining

genes, some discordant cases were identified. For example,
the TPMTMM values of commonly used HK genes GAPDH and

ACTB, although expressed in all cells, were under-expressed

in lymphoid cells and overexpressed in myeloid cells (Table

S3). To find the appropriate threshold to identify immune-spe-

cific HK genes from our dataset, we checked the proportions

of HK genes at different mean and SD thresholds using log2
TPMTMM values (Figure S5). The expression of roughly 75% of

HK genes had a mean > 5 and/or an SD < 1 (Table S3).

Comparison of Our Gene Expression Profiles with

External Datasets

The gene expression profiles of our dataset were compared with

external datasets in two ways (Figures 4 and S6A–S6D). The first

way consisted of retrieving the top 1,000 most variable genes for

the cell type of a FACS panel and performing Spearman correla-

tion of the cell type average gene expression values of our

dataset and an external dataset (Figure 4). Overall, the results

indicate concordance between our dataset and the external da-

taset tested (Abbas et al., 2005; Novershtern et al., 2011).

The second way was to overlap the genes found to be specific

for a cell type with our DEG analysis on TPM values with cell type

markers described in previous works. A strong overlap exists
Cell Reports 26, 1627–1640, February 5, 2019 1629
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Figure 2. Relationship between Immune Cell Types, Determined Using log2 TPM Values

(A) t-SNE analysis on the RNA-seq data of the 29 immune cell types and PBMCs. Results are shown in four separate plots to better distinguish the different cell

types. Each plot highlights the PBMCs and the cell types of one of the four panels used for FACS.

(B) Transcriptomic hematopoietic tree of the 29 immune cell types with progenitor cells fixed as the root of the tree.
with the DEGs found by Becht et al. (2016) and Abbas et al.

(2005) (Figures S6A and S6B), but comparisons with Bindea

et al. (2013) reveal a poor overlap among T cell subsets (Fig-

ure S6C). The single-cell RNA-seq study of Villani et al. (2017)

was also used to compare DCs and monocytes; we found a

good concordance as a stronger overlap was found between

DC6 and pDCs and between myeloid DCs (mDCs) and DC2/

DC3 (Figure S6D).

Using Our Cell Type-Specific and Co-expression

Modules to Analyze an Influenza Vaccine Cohort

The differential expression and co-expression data were used to

analyze a microarray dataset of PBMCs that was collected for

studying the immune response to influenza vaccination at four

different time points (0, 2, 7, and 28 days). We performed pair-

wise comparisons of the data at days 2, 7, and 28 versus day

0 (the baseline time point), and we identified the co-expression

modules previously retrieved (Table S3) that were enriched at

each time point (Fisher’s test with p value < 0.05) (Figure S6E;

Table S4).

Genes that were upregulated on day 2 were associated with

activation of the innate immune response, and downregulated

genes were associated with T cell activation. For day 7 post-

vaccination samples, there was an enrichment for genes specific

for antibody secreting cells, particularly plasmablasts, and

concordantly, enriched modules were related to B cell signaling,

cell cycle, and protein folding. As expected of typical immune ki-

netics during vaccination, we found no significant upregulation

of co-expression modules on samples from day 28, indicating
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a reversion to baseline profiles. Figure S6E also shows which

are the transcription factors and co-factors as they might be

responsible for the observed transcriptional changes.

Transcriptome Composition
Here, we explored the transcriptome composition of our 29 im-

mune cell types which belong to different lineages with large

phenotypical and morphological differences. These findings

highlight limitations in using normalization methods which as-

sume similar mRNA composition in different cell types.

mRNA Heterogeneity

With the TPM normalization, expression values are scaled so

that their sum is always 106 for each sample. This approach

allows transcript proportions to be comparable among samples.

However, in case the total mRNA of a sample is dominated by

the expression of only a few genes, the remaining fraction of

genes will be characterized by especially low expression values.

This effect applies only to RNA-seq data, not to microarray data,

as RNA-seq does not have an upper limit in its dynamic range

(Bullard et al., 2010a).

The comparison of cumulative TPM expression between

different immune cell types makes it possible to identify pro-

found differences in the mRNA composition with regard to tran-

script heterogeneity. For example, in plasmablasts and LD neu-

trophils, we found that relatively few genes were responsible for

the largest fraction of total mRNA (Figures 5A and 5B). A con-

trasting observation was made for progenitor cells, which had

the greatest diversity of expressed genes, an outcome that likely



Figure 3. Heatmap of DEGs between Each Immune Cell Type and Remaining Samples

Modules of genes were found by hierarchical clustering on Euclidean distance. The most biologically relevant GO terms associated with each module are re-

ported on the left. The top differentially expressed genes (DEGs) are reported on the right. See the full list in Table S3.
stems from their lack of commitment to specialized functions

(Kingsley et al., 2013). These findings also explain why data

from plasmablasts and LD neutrophils exist at a substantially

different scale from the other immune subsets (Figures 3, S4,

and S7A).

mRNA Abundance

The observation that both plasmablasts and LD neutrophils

display low mRNA heterogeneity does not imply similar mRNA

composition. Therefore, a second factor that must be consid-

ered is total mRNA abundance, which can vary greatly among

cell types because of two main factors that correspond either

to cell size or metabolic activity. For example, active cell cycling
requires increased metabolic activity, which correlates with

increased mRNA abundance (Tanenbaum et al., 2015).

By dividing the total RNA yield obtained from the RNA quanti-

fication assay (STAR Methods) by the corresponding number of

cells obtained from cell sorting, we could estimate the RNA yield

per cell for each cell type (RNAFACS). Our results indicate high

RNA yield for plasmablasts, DCs, and monocytes and low RNA

yield for LD granulocytes, progenitor cells, and CD4 TTE (Figures

5C and S7B).

We then calculated scaling factors that should mainly correct

for mRNA abundance when applied to TPM values (as they are

already normalized by RNA-seq library). The scaling factors are
Cell Reports 26, 1627–1640, February 5, 2019 1631



Figure 4. Comparison of the Gene Expression Profile of the Immune Cell Types from Our Dataset (Columns) with Four External Datasets

(Rows)

From the samples of each FACS panel in our dataset, we selected the top 1,000 variable genes and calculated the Spearman correlation with samples of external

datasets. For the correlation, we used the cell type average of normalized expression values.
values that optimize the error between deconvolution results and

flow cytometry proportions (Figure 7C; STAR Methods and

Absolute Deconvolution), inverted HKmean values (Figure S7D),

and inverted TMM values (RNATMM) (Robinson and Oshlack,

2010) (Figure S7E; STAR Methods). When comparing the values

generated by the different approaches (Figures 5C and 5D), we

noticed an ostensible discordance for a few cell types, particu-

larly LD neutrophils. As discussed, LD neutrophils have a few

highly expressed genes that crowd the total mRNA pool. Hence,

TMM and HKmethods may overestimate the mRNA scaling fac-

tor in attempting to normalize the expression of core gene sets

(the majority of genes) across all cell types. However, the total

RNA output of LD neutrophils is lower than that of many other im-

mune cells, as indicated by our RNAFACS estimation. This finding

suggests that certain normalization methods, such as the align-

ment of HK gene expression, upper quartile (UQ) (Bullard et al.,

2010a), TMM (Robinson and Oshlack, 2010), and relative log
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expression (RLE) (Anders and Huber, 2010) should be avoided

if the aim is to normalize for mRNA abundance across very

diverse cell types.

Absolute Deconvolution
Here, we used RNA-seq data to perform absolute deconvolution

on a suitable set of immune cell types using a procedure that

derives scaling factors for mRNA abundance normalization.

This same approach was thereafter adapted to be used with

microarray data.

Search for the Most Suitable Cell Type Combination

Deconvolution methods work only for cell types that have detect-

able and distinctive signals froma heterogeneous sample. Hence,

we performed a preliminary exhaustive search on all cell types

created by merging all possible combinations of T cell, B cell,

and monocyte subtypes. This was done by generating the Pear-

son correlation between the deconvoluted and flow cytometry
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Figure 5. Two Aspects of mRNA Composition: Heterogeneity and Abundance

(A and B) Heterogeneity.

(A) The cumulative sum of the median TPM values of nine relevant cell types calculated from values sorted in decreasing order. The total sum of TPM values is

always 106.

(B) The minimum number of genes that contribute to 80% of total gene expression in the 29 cell types. This number corresponds to the dashed red line in (A).

(C and D) Abundance.

(C) mRNA scaling factors for the 29 immune cell types calculated with four methods (STAR Methods). For the clustering distance between rows, we used the

Spearman correlation.

(D) Pearson correlation matrix for the values reported in (C).
proportions for all the merged cell types. From the preliminary

exhaustive search, we delineated nine classifications (the ones

also used for DEG analysis), which include the cell types that

yielded the highest mean Pearson correlation. Next, we per-

formed a second exhaustive search using the cell types of the

nine classifications to obtain a unique well-performing cell type

classification for deconvolution (Table S5), that is, 17 cell types

for RNA-seq (Figure 6) and 11 cell types formicroarray (Figure S8).

mRNA Normalization through RLM Deconvolution and

Optimization

Deconvolution requires absolute expression values, which is in

contrast to differential expression analysis, for which it might suf-

fice to compare counts normalized only for library size. For

example, in the case of LD neutrophils, it is undesirable to in-

crease the total gene expression values if the mRNA abundance

is relatively low compared with the remaining cell types. Hence,

one way to normalize RNA-seq data for deconvolution ap-

proaches is to calculate TPM values first, followed bymultiplying

these values with a scaled mRNA abundance value.
Although obtaining TPM values is straightforward, normalizing

for mRNA abundance can be tedious. We demonstrated the

impossibility of relying on certain mathematical methods (e.g.,

1/TMM) to obtain absolute measurements (Figures 5C and 5D).

Moreover, it is preferable not to use the total RNA yield estimates

from our RNA quantification divided by FACS enumeration for

two reasons: (1) the quantification has been made on total

RNA, and (2) the estimate is accurate only for a limited dynamic

range (1–200 ng).

Hence, we outlined a method to estimate scaling factors that

normalize TPM values for mRNA abundance using a robust de-

convolution method that works without constraints, that is,

robust LM (RLM) and a one-dimensional optimization procedure.

In our method, we first built a signature matrix including a set of

predictor variables (cell types) so that their merging reconstitutes

a full PBMC sample. Second, we used RLM to estimate b coef-

ficients from PBMC-derived transcriptomics data (the response

variable) and immune cell types (the predictor variables). As we

use TPM values, the b coefficients that were derived by RLM
Cell Reports 26, 1627–1640, February 5, 2019 1633
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Figure 6. Absolute Deconvolution of RNA-Seq PBMC Samples

(A) Exhaustive search for cell types that are suitable for deconvolution from PBMC-derived RNA-seq data. For each cell type, we report the mean and SD of

Pearson correlations obtained by deconvolution of all possible combinations of cell types (merged and non-merged) that reconstitute a PBMC sample. Cell types

that have been chosen for the deconvolution analysis in (B) are outlined in blue.

(B) Comparison of deconvoluted and flow cytometry proportions on 17 immune cell types with respect to PBMCs. The concordance correlation coefficient (ccc)

and the Pearson correlation coefficient (r) are shown on each plot.
embody both the contributions of immune cell proportions and

mRNA abundance. Hence, as a final step, we isolated the latter

component by using an optimization procedure that locates a

value that minimizes the error between estimated and real cell

type proportions (STAR Methods). This RLM deconvolution

and optimization procedure was performed using a well-condi-
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tioned signature matrix derived from the 4 individuals of the S4

cohort and on the flow cytometry and RNA-seq PBMC data of

12 individuals from the S13 cohort. The patterns of the estimated

mRNA scaling factors were relatively closer to those obtained by

RNA quantification and FACS enumeration as shown before

(Figure 5C).



Absolute Deconvolution for RNA-Seq PBMC Samples

When validating deconvolution, a high Pearson correlation

coefficient (r) indicates only that specific signal is present in the

signature matrix to allow the accurate estimation of alterations

in cellular proportions. However, to reveal if a robust estimation

of absolute numbers was obtained, a high concordance correla-

tion coefficient (ccc) must be attained. Figure 6B shows the

results obtained for the deconvolution of 17 immune cell types

using a signature matrix that has been normalized for mRNA

abundance with scaling factors that were derived as described

above (ABIS-seq [absolute immune signature for RNA-seq]).

Because we used a method that is robust to noise (i.e., RLM),

we did not filter out any noisy gene. For all cell types, we

observed a less than 0.1 difference between the Pearson and

concordance coefficients (Figure 6B). Our signature matrix,

ABIS-seq, can be directly used on TPM values of external

RNA-seq data of PBMC samples (see ABIS-seq in Table S5).

Absolute Deconvolution for Microarray PBMC Samples

Deconvolution was then performed usingmicroarray data for the

same PBMC samples used for the RNA-seq deconvolution (S13

cohort). For the cross-platform normalization, we kept only the

genes that yielded a Pearson correlation of >0.70 (755 genes)

between the matching RNA-seq and microarray data. From

the selected genes, a scaling factor was calculated by dividing

the UQ of microarray genes with the UQ of RNA-seq genes.

The microarray data from each sample was then divided by the

corresponding scaling factor.

The signature matrix used for microarray deconvolution was

filtered of noisy genes, that is, very high or low as well as non-

specific genes (STAR Methods). In contrast to RNA-seq, we

noticed that even a robust method such as RLM produced

poorer deconvolution results. However, we still obtained reason-

able cccs between estimated and ground-truth proportions for

several cell types (>0.8 for naive B cells and mDCs; >0.6 for T

naive, monocytes, LD neutrophils, and LD basophils) (Fig-

ure S8B). The signature matrix (ABIS-microarray) and the target

quintiles to normalize the ABIS-microarray gene set of external

PBMC samples are available in Table S5.

Benchmark of Five Deconvolution Methods

We compared the performance of five different deconvolution

methods (Figure 7A) using our RNA-seq dataset. The five decon-

volution methods compared are LM, non-negative LM (NNLM)

(Abbas et al., 2009), RLM, QP (Gong et al., 2011), and SVR as

used for CIBERSORT (Newman et al., 2015). The performance

of each method was evaluated using the root-mean-square error

(RMSE) obtained between deconvoluted and flow cytometry pro-

portions. Noise and multicollinearity were respectively evaluated

by the absence of gene filtering and by increasing the number

of genes for the signature matrix. The gene-filtering procedure

again consisted of removing geneswith very low and high expres-

sion aswell as those that lack specificity (STARMethods). Among

the fivemethods, our study shows that CIBERSORT and RLM are

least affected by both noise andmulticollinearity. However, all de-

convolution methods also performed relatively well with a filtered

and a well-conditioned signature matrix.

The ability of deconvolution methods that implement con-

straints to give better estimates was then evaluated (Figure 7B).

We compared the deconvolution results obtained from TPM and
TPMgRLM with methods that apply no constraints (LM and RLM)

and with three methods that apply constraints (NNLM, QP, and

CIBERSORT). As hypothesized, we found that applying con-

straints is not sufficient to obtain absolute estimates. In fact,

the cccs were substantially lower when using TPM expression

values compared with using TPMgRLM independently of the de-

convolution method used.

Validation of Our Normalization Method and Signature

Matrices

The RNA-seq and microarray deconvolution analyses were

repeated using different normalization strategies, which are

TPM, TPMFACS, TPMHK, and TPMTMM for RNA-seq and quantile

normalization for microarray. The Pearson correlation values be-

tween estimated and real proportions remained high across all

normalization methods. However, the cccs remained high only

for TPMgRLM, while it drastically dropped for all the other normal-

ization strategies (Figure 7C).

Last, we tested absolute deconvolution using our normalized

signature matrices (Table S5) on external RNA-seq and microar-

ray datasets (Mohanty et al., 2015; Newman et al., 2015; Zim-

mermann et al., 2016) (Figure S9A). Moreover, for comparison

we performed deconvolution on quantile normalized signature

matrices including results obtained using three independently

proposed signature matrices: IRIS (Abbas et al., 2005, 2009),

LM22 (Newman et al., 2015), and ImmunoStates (Vallania

et al., 2017) (Figure S9B). Our signature matrices normalized

for mRNA abundance performed consistently better in all cases

(Figure S9).

DISCUSSION

In this study, we generated and analyzed gene expression and

flow cytometry data for 29 immune cell types constituting the

PBMC fraction. The data were mainly used to address open

questions on the deconvolution of heterogeneous immune sam-

ples, although it was also used for the generation of valuable

resources. The patterns of the transcriptomics dataset were re-

vealed by using dimensionality reduction and clustering

methods (Figures 2 and S2). Highly distinct profiles were ob-

tained for LD neutrophils, LD basophils, plasmablasts, progeni-

tors, and pDCs; the remaining cell types grouped within broader

categories with varying degrees of overlap. For example, CD8

T cells with effector functions, such as CD8 TEM and CD8 TTE,

clustered closely together, as expected from previous findings

(Willinger et al., 2005). These subtypes were also closely related

to CD4 TTE cells and other cell types with degranulation activity,

such as non-classical T cells and NK cells. A separate group of

T cells consisted of CD4 memory T cells and CD8 TCM cells.

As previously reported (Pennock et al., 2013), these cells can

be distinguished by their strong cytokine production capacity.

Finally, T cells with a naive phenotype formed an independent

cluster, regardless of their commitment to the CD4 or CD8

lineage.

The gene expression data were then used to retrieve sets of

differentially expressed, co-expressed, and immune-specific

HK genes (Table S3). Enrichment analysis using the GO and

Reactome databases revealed the functionalities of modules of

genes. As our data are at RNA-seq resolution, it may be possible
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Figure 7. Benchmarks and Validations of Different Deconvolution and Normalization Methods

(A) Comparison of five deconvolution algorithms in the presence and absence of noise and at increasing size of the signature matrix. The total RMSE is calculated

by using the estimated and ground-truth proportions of the 17 cell types of RNA-seq deconvolution.

(B) Comparison of results obtained from deconvolution methods with and without constraints and using our signature matrix for RNA-seq deconvolution with

either TPM values or absolute expression values (ABIS-seq).

(C) Comparison of RNA-seq and microarray deconvolution results with different normalization methods. Each dot is a different cell type.
to identify (by association) candidate genes that have unknown

or partially known functions. Our modules can also be used to

enrich gene expression analyses from datasets produced at

the microarray level, as demonstrated by the analysis of our

vaccination cohort (vaccine cohort) (Figure S6E).

Among the 29 immune cell types, the transcriptome composi-

tion was particularly different in progenitors, LD neutrophils, and

plasmablasts. Progenitors revealed the largest heterogeneity of

gene expression as a wide spectrum of mRNA molecules are

produced by its transcriptional machinery. In contrast, LD neu-

trophils and plasmablasts have very few specific genes that

contribute greatly to the total mRNA composition (Figures 5A

and 5B). Although both plasmablasts and LD neutrophils have

a relatively low mRNA heterogeneity, their mRNA abundance is

at two different extremes in comparison with the other immune

cell types (Figures 5C and 5D).

The normalization for mRNA abundance in differential expres-

sion analyses can lead to misleading results. For example, if the
1636 Cell Reports 26, 1627–1640, February 5, 2019
analysis is done with absolute values of two cell types with

largely different total mRNA output (e.g., 100 for cell type A

and 1,000 for cell type B), this would probably lead to the erro-

neous conclusion that all the genes in cell type A are downregu-

lated. However, normalizing for mRNA abundance is critical for

the purposes of deconvolution. Existing methods that include

the UQ, TMM, and RLE (Anders and Huber, 2010; Bullard

et al., 2010a; Robinson and Oshlack, 2010) cannot correctly

identify cases in which the overall transcriptional machinery is

downregulated or upregulated. Similarly, this happens when at-

tempting to normalize gene expression by using HK genes as

reference whose expression levels are assumed to be similar

among different cell types (Risso et al., 2014). This led us to

develop an approach that consisted of scaling the TPM values

by a factor that minimizes the error between flow cytometry

and deconvoluted proportions ðTPMgRLMÞ. We used RLM to de-

convolute the cell type proportions, which is a method with no

constraints and robust to noise (STAR Methods). The procedure



needs to be performed only once to normalize the signature ma-

trix for a type of heterogeneous sample. Hence, the provided two

signaturematrices, one for RNA-seq and one formicroarray data

(ABIS-seq and ABIS-microarray), can be directly used for PBMC

deconvolution (Table S5).

Deconvolution is accurate only if it can detect a signal that is

specific for a cell type and that is expressed in a consistent

pattern among the cell types of a heterogeneous sample. There-

fore, when needed, wemerged the sorted cell types into broader

cell types with a specific signal that is detectable from PBMC

expression data. For RNA-seq, we obtained optimal results by

using 17 cell types. Specifically, we combined the memory sub-

sets of B cells and T cells as well as the non-classical and inter-

mediate monocytes (Figure 6A). Progenitor cells were the only

cell type not suitable for deconvolution that could not be grouped

with other cell types. The deconvolution results after normaliza-

tion for mRNA abundance were robust even for cell types that

existed at very low frequencies within PBMCs, such as pDCs,

mDCs, LD neutrophils, and LD basophils.

For microarray deconvolution we obtained optimal results for

11 cell types, that were then used to retrieve mRNA scaling fac-

tors with our deconvolution and optimization approach (Fig-

ure S8). Overall, the results were less accurate in comparison

with the deconvolution results obtained with RNA-seq data.

We attribute this difference to two main disadvantages of the

microarray platform: (1) an imposed upper limit due to probe

saturation (Gong et al., 2011) and (2) the measurement of gene

expression levels on a limited set of pre-annotated genes. For

example, data on TRDV2 gene expression, which is essential

for deconvoluting the signal from Vd2 T cells, were absent. A

shared limitation between both microarray and RNA-seq tech-

nologies is the susceptibility of low gene expression signals to

background noise, which seemed to be the most plausible

explanation for the poor deconvolution of progenitor cells. This

limitation, however, can be potentially circumvented for RNA-

seq data by increasing sequencing depth. In this perspective,

PBMCs might be more informative than whole blood, in which

neutrophils constitute approximately 40%–80%, and it would

more likely obfuscate the signal of other cell types. Nevertheless,

the deconvolution of whole blood should be investigated in

future studies as it represents an untouched source of biological

samples.

Although RLM was used for all the deconvolution analyses,

several other deconvolution algorithms have beenmade available

in recent years (Abbas et al., 2009; Gong et al., 2011; Newman

et al., 2015; Shen-Orr and Gaujoux, 2013). We assessed the per-

formance of five of these deconvolution methods (Figure 7A) and

found that RLM and SVR, as used in CIBERSORT (Newman et al.,

2015), were least affected by noise and multicollinearity. More-

over, all tested methods achieved optimal performance when a

filtered and well-conditioned signature matrix was used. Never-

theless, we rationalized that it wasmore useful to adopt a method

that was unconstrained (such as LM or RLM) in exploratory

phases because they have a tendency to reveal sources that

generate noise within a dataset. Moreover, we demonstrated

that using constraints, such as non-negativity and total sum to

1, does not improve absolute estimation if data are not properly

normalized for mRNA abundance (Figure 7B).
Our normalization approach outperforms commonly used

normalization approaches in the estimation of absolute propor-

tions (Figure 7C). This was also tested in external datasets and

compared with the results obtained using signature matrices

produced in previous works (Figure S9). The external validation

could be performed only on major cell types, because of the

lack of ground-truth data for finer cell types. Moreover, this

also allowed a fairer comparison with external signature

matrices, as they are all designed to deconvolute a different

set of immune cell types. However, a more comprehensive

benchmark should be performed whenmore data become avail-

able. This should be especially done for low-frequency cells

which we found not suitable for deconvolution but were included

in other signature matrices (such as the Tfh, Tregs, and T gd in

LM22).

Several issues deriving from technical and biological variability

should be considered when generating a signature matrix. Tech-

nical factors that may interfere with the deconvolution analysis

include sample preparation protocol, cell isolation method, and

transcriptomics platform used. For example, flow cytometry

has several limitations, as it suffers from spectral overlap, it pro-

duces background signal, and it induces cellular stress or even

cellular death on especially susceptible cells, such as neutro-

phils (Hu et al., 2016). This affects both the calculation of the

ground-truth cell proportions and the gene expression profile

of sorted cells. Other approaches, however, are not free from

limitations. All methods that use antibodies as a way to detect

a target molecule, such as immunohistochemistry (IHC), mag-

netic-activated cell sorting (MACS), and mass cytometry, are

biased by the binding efficiency of the clones used (Ivell et al.,

2014). In addition, the labeling of an antibody with fluorophores,

metals, or beads can modify the binding specificity of the anti-

body (Atkuri et al., 2015). More specifically, mass cytometry

cannot be used to sort cells, as it disintegrates the cells

analyzed, and there are additional contaminating sources that

must be considered, such as metal impurities and oxidation

products (Leipold et al., 2015). MACS induces less stress than

FACS in sorted cells, but it generally gives lower purity and it

does not provide cell percentages (Hu et al., 2016; Li et al., 2013).

Biological factors that may contribute to cohort-specific ob-

servations include gender, age, ethnicity, and pathological con-

dition. For example, a pathologic condition could drastically alter

the total mRNA abundance of certain immune subsets or the

expression of genes believed to be specific to one cell type. In

extreme cases, different biological settings could introduce

new subtypes that would generate noise, as these were absent

in our original PBMCs samples. Hence, generating a single

signature matrix that is robust to individuals’ health conditions

and gene expression platform, as done in a recent work (Vallania

et al., 2018), might reduce the performance that could be ob-

tained in specific settings. However, this kind of meta-analysis

in which many different datasets are collected is necessary to

better understand the limitations of deconvolution.

In conclusion, using RNA-seq data from 29 different immune

cell types, we comprehensively explored the transcriptomics

pattern and signature of each immune cell type, thereby gener-

ating a library of transcriptomic resources, including DEGs,

co-expressed genes, and immune-specific HK genes. In
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addition, we took into consideration and revealed detailed differ-

ences among the various immune subsets for two aspects of

mRNA composition: mRNA heterogeneity and mRNA abun-

dance. Last, we developed a method for normalizing RNA-seq

data for mRNA abundance to enable absolute deconvolution.

The same method was also adapted for microarray deconvolu-

tion. We provide the signature matrices and a Shiny app to

directly perform deconvolution of PBMC gene expression data

(https://github.com/giannimonaco/ABIS). This work raises new

questions and possibilities as to how immune gene expression

data can be analyzed to generate information, not only for

future studies but also for completed ones. We believe that our

work provides greater dimensionality to the current landscape

of immunogenetic research and makes a relevant step into un-

derstanding and devising strategies to tackle immunological

phenomena.
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FlowJo v10 FlowJo, LLC https://www.flowjo.com/solutions/flowjo; RRID:

SCR_008520

flowAI v1.4.2 Monaco et al., 2016 10.18129/B9.bioc.flowAI

FastQC v0.11.5 Babraham Institute http://www.bioinformatics.babraham.ac.uk/

projects/fastqc/, RRID:SCR_014583

Kallisto v0.43.1 Bray et al., 2016 https://pachterlab.github.io/kallisto/download

Tximport v1.6.0 Soneson et al., 2016 10.18129/B9.bioc.tximport

MultiQC v1.0 Ewels et al., 2016 http://multiqc.info RRID:SCR_014982

ComBat (from sva v3.26.0) Johnson et al., 2007 10.18129/B9.bioc.sva; RRID:SCR_012836

ggplot2 v2.2.1 Wickham, 2009 http://ggplot2.org/; RRID:SCR_014601

limma v3.34.9 Ritchie et al., 2015 10.18129/B9.bioc.limma; RRID:SCR_010943

EDAseq v2.12.0 Risso et al., 2011 10.18129/B9.bioc.EDASeq; RRID:SCR_006751

Rtsne v0.13 Jesse Krijthe https://cran.r-project.org/web/packages/Rtsne/

index.html

ape v5.0 Paradis et al., 2004 https://cran.r-project.org/web/packages/ape/

index.html

WGCNA v1.63 Langfelder and Horvath, 2008 https://cran.r-project.org/web/packages/

WGCNA/index.html RRID:SCR_003302

dynamicTreeCut v1.63-1 Langfelder et al., 2008 https://cran.r-project.org/web/packages/

dynamicTreeCut/index.html

ComplexHeatmap v1.17.1 Gu et al., 2016 10.18129/B9.bioc.ComplexHeatmap

Non-linear least square regression (NLLSR) Abbas et al., 2009 N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

QP Gong et al., 2011 N/A

CIBERSORT Newman et al., 2015 https://cibersort.stanford.edu/

ABIS deconvolution This paper https://github.com/giannimonaco/ABIS
CONTACT FOR REAGENT AND RESOURCE SHARING

Requests for further information should be directed to and will be fulfilled by the Lead Contact, Dr. Gianni Monaco (mongianni1@

gmail.com).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Donors
Blood from four Singaporean healthy individuals (2 males and 2 females) aged 20-35 years (S4 cohort) was collected for RNA-Seq

transcriptomic profiling of the selected 29 immune cell types. Blood from the S4 cohort and from a further nine Singaporean healthy

individuals (7 males and 2 females) aged 20-35 years (S13 cohort) was used for flow cytometry-based immunophenotyping of the 29

immune cell types, and microarray and RNA-Seq transcriptomic profiling of PBMCs (Figure 1). The study was approved by the NUS

Institutional Review Board (IRB number NUS-IRB 10-250). All subjects gave informed consent and samples were pseudo-anony-

mized. To reduce variability, blood was drawn in the morning from fasting participants and there were no changes in the personnel

involved in performing the experiments. Analyses on gender differences were not performed in this work as a larger cohort is

needed in order to obtain statistically robust results. For validation analyses, we used a vaccine cohort from an in-house clinical

trial NCT: NCT03266237. In this study, blood was collected from 240 Singaporean individuals aged 23-89 years on day 0, 2, 7,

and 28 following flu vaccination. These samples were used for flow cytometry immunophenotyping and microarray transcriptomic

profiling.

METHOD DETAILS

Antibody panel design
Four antibody staining panels were designed to sort (cohort S4) and immunophenotype (cohort S13) the 29 immune cell types from

the following broad categories: 1) CD4 T cells (panel 1); 2) CD8 T cells, mucosal associated invariant T (MAIT) cells and gd T cells

(panel 2); 3) B cells and progenitor cells (panel 3); and 4) monocytes, NK cells, DCs and LD granulocytes (panel 4). The 29 cell types

were chosen to cover themajority of cells that constitute a PBMC sample without any overlap among cell types (Figures 1 and S1 and

Table S1).

For panel 1, we used chemokine receptors to distinguish between T helper subtypes (Brodie et al., 2013, 2016). From the results

given by the two papers of Brodie et al. andMilteny guidelines we decided to use the chemokine markers, CCR6, CXCR3 and CCR4,

to discriminate between Th1, Th2, Th17 and Th1/17. We did not consider Th9 and Th22 as they are generally present in very low

percentages in the blood and it was impractical for us to include more cell types in panel 1. Because most Th cells are central

and effector memory CD4 T cells (CM and EM), we used CCR7 and CD45RA to isolate naive and terminal effector (TE) CD4

T cells in order to fill the CD4 T cell compartment. The T follicular helper (Tfh) cells were recognized by their specific expression of

chemokine marker CXCR5 (Mahnke et al., 2013b; Crotty, 2011). The discrimination of T regulatory cells follows the suggestions pro-

posed in previous works (Liu et al., 2006; Mahnke et al., 2013a).

For panel 2, we used CCR7 and CD45RA to classify the CD8 T cells across four maturation stages: naive, central memory (CM),

effector memory (EM) and terminal effector (TE). Regarding the Y/d T cells, although three main subtypes have been described (Vd1,

Vd2, and Vd3) (Kalyan and Kabelitz, 2013), we only selected two groups ofY/d T cells according to their expression of Vd2. This choice

was driven by the fact that Vd1 and Vd3 are highly heterogeneous and their exact features are not yet well defined. Some cells positive

for Vd2 show negative expression for the TCR Y/d. This might be due to steric hindrance and therefore they were still considered as

Vd2 cells. Mucosal associated invariant T (MAIT) cells were defined by the simultaneous expression of two markers, Va7.2 and

CD161.

For panel 3, we used themarkers IgD andCD27 to discriminate betweenmaturation stages of B cells: naive, non-switchedmemory

(NSM), switched memory (SM) and exhausted memory (Ex) (Adlowitz et al., 2015). To discern plasmablasts (the memory B cells that

actively produce antibodies) we used the marker CD38 (Fink, 2012). To retrieve progenitor cells, we gated on the high expression of

CD34 and low expression of CD45.

For panel 4, we used different expression level of CD14 and CD16 to distinguish classical, intermediate and non-classical

monocytes (Ziegler-Heitbrock et al., 2010). The DCs were classified in two main subtypes which originate from different progenitors:

myeloid DCs (mDCs) and plasmacytoid dendritic cells (pDCs). These cells are antigen presenting cells and both express HLA-DR.
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Further gatings were performed on CD11c for mDCs and on CD123 for pDCs. NK cells express different combinations of CD16 and

CD56 according to their maturation stages. However, given the low percentage of some NK subtypes, we decided not to subdivide

NK cells into finer subtypes. Because CD11c is not only expressed on mDCs but also on monocytes, CD11c can also be used to

better separate NK cells from non-classical monocytes. Lastly, LD granulocytes can be gated using markers already used for other

cell types. LD neutrophils have been selected as producing large scattered light and high expression of CD16, and basophils have

been selected from their expression of CD123 and lack of expression of HLA-DR.

For the vaccine cohort samples, one staining panel was designed to immunophenotype the major immune cell types with a focus

on B lymphocytes (panel 5; Table S1).

Blood processing
BD Vacutainer� mononuclear Cell Preparation Tubes (CPTTM; Becton Dickinson) were used for blood collection (8 ml/CPTTM). The

tubes were then centrifuged for 20min at 1650 relative centrifugal force (RCF) with no brake, the plasmawas removed and the PBMC

layers were transferred to falcon tubes, as per the manufacturer’s instructions. The cells were washed with phosphate-buffered

saline (PBS)/5% fetal bovine serum (FBS) buffer solution for 5 min at 340 RCF. After re-suspension, the cells were counted using

a haemocytometer and split according to the downstream experiment. At this stage, aliquots of �5x106 PBMCs were taken from

the samples of the S13 and vaccine cohorts, and lysed in 1mL TRIzol� or 1 mL mirVana (Thermo Fisher Scientific), respectively.

The aliquots were stored at �80�C.

Antibody staining and immunophenotyping
After PBMC isolation, aliquots of 1x106 cells were stained with each antibody panel. The antibody clones were purchased from

BioLegend, BD Biosciences or Miltenyi Biotec (Table S1). For CCR7 staining, we used clone G043H7 with a pre-incubation step

at 37�C for 10 min; this clone provided a better staining index compared to the previously suggested clone 150503 (Maecker

et al., 2012). All other antibodies were incubated at 4�C for 25 min. After incubation with fluorescence-conjugated antibodies, the

cells were washed and re-suspended in a PBS/5% FBS/2 mM EDTA buffer solution. Single stained and unstained beads were

used to establish the compensation matrix. Immunophenotyping was performed using a BD Symphony� for the S13 cohort (panel

1-4; Table S1) and a BD Fortessa� for the vaccine cohort (panel 5; Table S1). Flow cytometry data were compensated using FACS-

Diva software, quality checkedwith the R package flowAI (Monaco et al., 2016) and gated using FlowJo software. One flow cytometry

file of the S13 cohort did not pass the quality check and hence the immunophenotyping information for the corresponding donor was

excluded from further analyses.

FACS Sorting
From the S4 cohort,�2-3x108 PBMCs were separated into CD3+ and CD3- populations using magnetic beads (Figure 1). The CD3+

fraction was then split into two equally sized aliquots for T cell staining with either antibody panel 1 or 2. The CD3- fraction was also

split into two aliquots: one aliquot (60%) for B cell and progenitor-cell staining with panel 3, and one aliquot (40%) for monocyte, DCs,

NK cells and LD granulocyte staining with panel 4. After staining, the immune cells were sorted using a BD Influx for panel 1 and 3, a

FACS Aria 5 for panel 2, and a FACS Aria 4 for panel 4 (all BD Biosciences). All cells were stained and sorted within 7 h after

blood collection and kept on ice between processing steps. Sorting was performed to > 98% purity and then cells were lysed in

TRIzol� reagent (Thermo Fisher Scientific) and stored at �80�C.

RNA extraction and quantification
Total RNA was extracted from all samples (immune cell types from the S4 cohort and PBMCs from the S13 and vaccine cohorts) for

gene expression analysis. The RNA from the samples of the S4 and S13 cohorts was extracted with the TRIzol� isolation protocol

followed by QIAGEN RNeasy Micro clean-up procedure. The RNA from the vaccine cohort samples was isolated using a mirVanaTM

miRNA Isolation Kit (Thermo Fisher Scientific). RNA quality was assessed on an Agilent 2100 Bioanalyzer and samples with an RNA

Integrity Number (RIN) < 6were excluded from further analyses. The RIN for two samples of CD4 T terminal effector (TTE) cells was not

available as the total RNA obtained was too low; these cells were excluded from further analyses. The RNA concentration was deter-

mined using a Quant-iTTM RiboGreen� RNA Assay Kit (Thermo Fisher Scientific).

RNA-Seq and microarray data generation
RNA aliquots from immune cell types isolated from the S4 cohort and from the PBMCs isolated from the S13 cohort were used for

RNA-Seq analysis on an Illumina HiSeq 2000. The cDNA libraries were prepared from 2 ng total RNA and 1 mL of a 1:50,000 dilution of

external RNA control consortium (ERCC) spike-in control mix (Thermo Fisher Scientific) using the SMARTSeq v2 protocol (Picelli

et al., 2014) with the following modifications: 1) use of 20 mM template-switching oligos (TSO), 2) use of 250 pg of cDNA with 1:5 re-

actionmixtures of the IlluminaNextera XT kit. The length distribution of the cDNA libraries wasmonitored using a DNAHigh Sensitivity

Reagent Kit (Perkin Elmer). All samples were subjected to an indexed paired-end sequencing run of 2x51 cycles (16 samples/lane). In

total, 114 samples (two samples of CD4 TTE cells and four samples for each of the remaining 28 immune cell types) of the S4 cohort

and all 13 samples of the S13 cohort were taken forward for further analyses.
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RNA aliquots from the PBMC samples obtained from the S13 and the vaccine cohorts were used for microarray analysis on an

Illumina HT12 v4 BeadChip. To amplify the cDNA, the TargetAmp 2-Round aRNA Amplification Kit 2.0 (Epicenter) was used for

the S13 cohort and the Illumina� TotalPrep RNA Amplification Kit (Thermo Fisher Scientific) for the vaccine cohort. The data was

exported with GenomeStudio and all 13 samples of the S13 cohort and 636 samples (159 subjects with all four time points) of the

vaccine cohort passed all quality checks.

QUANTIFICATION AND STATISTICAL ANALYSIS

RNA-Seq and microarray data preprocessing
The genome assembly and annotation for the RNA-Seq data analysis was downloaded from GENCODE (version 26) (Harrow et al.,

2012). The quality of the RNA-Seq data was assessedwith FastQC (Andrews, 2010). The reads were pseudo-aligned to the transcrip-

tome with kallisto (Bray et al., 2016), and the transcript expression values were then summarized into gene expression values with

tximport (Soneson et al., 2016). MultiQC was used to assess the performance of the preprocessing steps (Ewels et al., 2016). The

effect of guanine-cytosine (GC) content was explored using EDAseq (Risso et al., 2011). The counts were normalized for sequencing

depth and gene length using the Transcripts Per Million (TPM) method (Li et al., 2010).

Microarray data were quantile normalized and corrected for batch effects using ComBat (Johnson et al., 2007). Illumina probes

were converted into gene symbols and in the case of duplicates, only the maximum value was kept. For the cross-platform normal-

ization of the PBMC RNA-Seq and microarray data of the S13 cohort, we selected genes with a Pearson’s correlation > 0.7 (755

genes). The UQ of the microarray values was then divided by the UQ of the RNA-Seq expression values and the resulting scaling

factor was used to normalize the full microarray dataset.

Transcriptomics analyses
The majority of analyses on the transcriptomic data from the 29 immune cell types utilized log2 TPM + 1 values that were filtered only

from genes with a raw count R 4 in at least three samples (unless otherwise indicated). All analyses were performed within the R

environment andmost plots were produced with the ggplot2 package (Wickham, 2009). TheRtsne package and the prcomp function

from the stats package were used to perform the t-SNE and PCA analyses (Figures 2A and S2A), respectively. The hierarchical clus-

tering was generated using the hclust function with Euclidean distances (Figure S2B).

The transcriptomic hematopoietic tree was generated using the Spearman’s correlation coefficient (1-r) as pairwise distances and

the neighbor-joining method for sample clustering (Figure 2B). Bootstrap values were calculated for each node to show the consis-

tency of the branching patterns. These values were calculated by building 100 trees from randomly sampled genes with replacement

and retrieving the number of times each branch conserved the topology of the consensus tree. The tree and bootstrap values were

generated with the ape package (Paradis et al., 2004).

The DEGs were found using the limma package (Ritchie et al., 2015) from both TPM and TPMTMM values (Table S2). The mean-

variance relationship was modeled with the voom function and the Benjamini-Hochberg method (Benjamini and Hochberg, 1995)

was used to adjust for multiple hypothesis testing. For the design matrix, each cell type was contrasted against the remaining sam-

ples. The PBMC samples were only included for linear model fitting, but they were excluded from any contrast. The differential

expression analysis just described were not only applied to the 29 immune cell type classification, but also to broader categories

(Table S2).

The modules of DEGs were retrieved from the differential expression analysis on TPM values (Figure 3 and Table S3). The

results from all contrasts were included and a stringent threshold was used for the initial filtering (log2 fold change > 4 and

FDR < 0.005). Modules were found using hierarchical clustering with Euclidean distance and the function cutreeDynamic from the

R package dynamicTreeCut (Langfelder et al., 2008). To find the co-expressedmodules (Figures S3 and S4 and Table S3), we filtered

out the genes with a total log2 TPM + 1 expression < 50 from the 114 samples of the 29 immune cell types and kept the genes with an

expression > 3.5 in at least 5 samples. Unsigned Spearman correlation was calculated for each pair of genes and the adjacency ma-

trix was retrieved by exponentiating everything to the power of 6. The function TOMsimilarity from the WGCNA package was then

used to calculate the topological overlap matrix. The hierarchical clustering was performed on the dissimilarity matrix and the cutree-

Dynamic function was then used to retrieve the modules (Langfelder and Horvath, 2008).

The heatmaps were produced with the ComplexHeatmap package (Gu et al., 2016). We used the gene ontology (GO) database for

the enrichment analysis of the DEGs and co-expression modules (Table S3) and the Reactome databases V61 (Fabregat et al., 2016)

for the DEGs of each cell type obtained using TPMTMM values. (Table S3). We performed a hypergeometric test for the enrichment

analysis using the overlapping genes between our gene annotation and the database (i.e., GO or Reactome) as background.

We used two approaches to compare the gene expression profiles of the 29 immune cell types of the S4 cohort. The first approach

(Figure 4) consists of grouping the samples according to the FACS panel they belong to. Then we averaged the log2 TPM + 1 value of

the samples of the same cell type andwe kept the top 1000 variable genes for each group. From external datasets (Abbas et al., 2005;

Calderon et al., 2018; Javierre et al., 2016; Novershtern et al., 2011), we retrieved the readily available normalized expression

values and averaged the ones from samples of the same cell type. Our expression values were then compared with the expression

values of selected cell types from the external datasets with the Spearman correlation. The second approach (Figure S9) consists

of calculating the overlap between the genes found to be specific for our 29 immune cell types from the DEG analysis (log2 fold
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change > 2 and FDR < 0.05) and the genes specific for the cell types of the external datasets as reported in the supplementary

material of the respective papers (Abbas et al., 2005; Becht et al., 2016; Bindea et al., 2013; Villani et al., 2017).

Normalization for mRNA abundance
We used four methods to calculate scaling factors to normalize for mRNA composition: 1) dividing the RNA quantification values ob-

tained with the Quant-iT assay by the FACS enumeration (RNAFACS), 2) using our method based on deconvolution and optimization

(RNARLM) (see Deconvolution section), 2) inverting the trimmed mean of M-values calculated from TPM values (RNATMM) (see ratio-

nale below), 3) inverting the median values of HK genes calculated from TPM values (RNAHK).

TPM values of the S4 cohort were normalized for mRNA abundance by multiplying them with the scaling factors just described,

hence obtaining TPMFACS, TPMRLM, TPMTMM, TPMHK. When a tilde is added on top of the method subscript, e.g. TPMgRLM, it indi-

cates that the median scaling factor was used for all samples of a specific cell type. Without tilde, the scaling factor is specific for

each sample. Tomake themethods comparable we used PBMC samples as the reference, i.e., the mRNA scaling factors for PBMCs

were always 1.

Rationale for the TPMTMM normalization method
The trimmedmean ofM-value (TMM) is anRNA-Seq normalizationmethod implemented in the edgeR package developed to account

for RNA composition. It was reported by Robinson and Oshlack (2010) and it has been thoroughly described by Maza (2016).

Robinson and Oshlack state that normalizing for library size is a sufficient practice for technical replicates (step I of Table 2 in Maza

2016). The resulting values could then be multiplied by 1 million to obtain the count per million (CPM):

Raw counts

library size
x 106

However, this approach is not appropriate for several situations where the biological samples have different RNA composition. In a

similar way to previous normalization approaches developed for microarray data, the assumption behind TMM is that the majority of

genes are not differentially expressed and hence they should have the same distribution. This is an accepted practice for the most

common analysis done on gene expression data, i.e., finding of DEGs. The library sizemultiplied by the TMM values give the effective

library size (step V in Maza 2016):

effective library size= library size x TMM

Hence, the effective library size should be used to normalize the raw counts to account for RNA composition (step VII in Maza 2016):

Raw counts

effective library size
x 106

The alternative approach described in our paper to normalize for RNA composition is to use TPM values, which are normalized by

transcript gene length and whose library size is always 106, scaled by an mRNA abundance scaling factor. Hence:

TPM x scaled mRNA abundance

If we use TPM values as raw counts for the calculation of the TMM values, we have:

TPM

106 x TMM
x 106

Assuming that TMM values should normalize for RNA composition we can then state that both normalization approaches are

equivalent:

TPM x scaled mRNA abundance z
TPM

106 x TMM
x 106

that is reduced to:

scaled mRNA abundance z
1

TMM
Retrieval of mRNA scaling factor through RLM deconvolution and optimization
To retrieve the mRNA scaling factors, we used RLM since the method is more resilient to noise. However, the concept can be more

easily described with an LM framework as:

y= bb1x1 + bb2x2 +.+ bbnxn + ε

where y is the expression of one gene in a set of heterogeneous samples (in our case PBMCs), x1,x2,.,xn, are the gene expression

values of the same gene in each constituting cell type, and b1, b2,., bn, are the coefficients describing the change in y with respect
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to x. Bold characters indicate vectors of numbers, while regular characters indicate scalars. In this model, there is no intercept term

because the regression model is forced to pass through the origin. In other words, when all the predictor variables (the expression in

the immune cell types) are 0, the response variable (the expression in the PBMCs) must be 0.

When the gene expression values are correctly normalized and hence correspond to the real absolute gene expression, the b co-

efficient corresponds to the immune cell proportion only. However, when the gene expression values are not normalized by mRNA

abundance (i.e. TPM values), the b coefficients account for both immune-cell proportion and mRNA abundance. In this case, the

model can be re-written as:

y= br1ba1x1 + br2ba2x2 +.+ brnbanxn + ε;

� br > 0ba > 0

where the br values account for the proportions, the ba values account for mRNA abundance of each cell type and both the br and ba
values are positive numbers. We cannot estimate both the br and ba values with the gene expression values only; however, we can

estimate the ba values by knowing real cell-type proportions (r), that in our case have been calculated by flow cytometry. To obtain

an optimal ba value for each cell type, we used an optimization algorithm to find the ba value that minimizes the root mean square error

(RMSE) between theestimated br and realrproportionsover a set of k individuals (in our case theS13cohort).Hence, for eachcell type:

minba˛ðl;uÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk

i= 1

ðbr i � riÞ2
vuut

where l and u are the lower and upper limits for the ba value, respectively, and can be optionally set using prior knowledge. For the

optimization procedure, we used the optimize function from the stats package, which uses a combination of golden section search

and successive parabolic interpolation.

Suitable cell types and signature matrices for absolute deconvolution
Deconvolution methods only work for cell types that have a detectable and specific signal pattern from a heterogeneous sample.

Hence, when possible we merged cell types from the classification used for FACS (i.e., the 29 cell types) with no detectable and/

or no specific signal into broader cell types. To choose the most detailed and well-performing cell type classification for deconvo-

lution, we performed two exhaustive searches. The first exhaustive search consisted of using all the cell type combinations derived

by merging the cell types from our four largest lineages: CD4 T cells, CD8 T cells, B cells and Monocytes. Then, we delineated 9 cell

type classifications which include the cell types that gave the best results in the first exhaustive search (Table S2). For the second

exhaustive search, we used all possible combinations from the 9 cell classifications. From the results obtained we then picked

the most effective cell type classification (Figures 6A and S8A and Table S5). From this procedure we selected a set of 17 and 11

cell types for RNA-Seq and Microarray deconvolution, respectively.

In order to get the signatures of the immune compartments we calculated median TPM values for the 29 sorted cell types and me-

dian TPM values weighed by flow cytometry proportions for the merged cell types. The genes compiling the signature matrix were

selected using the results of the differential expression analysis on the TPM values between each cell type and all the remaining sam-

ples.We ranked the genes by their q value (false discovery rate) and kept thosewith a log2 fold change > 2 and q-value < 0.05. Option-

ally, a set of filtering procedures was performed to remove noisy genes, i.e., thosewith very high expression (> 5000 in at least one cell

type), very low expression (sum of all samples < 50) and poor specificity (log2 fold change > 0.2 between first and second highest

expression). To further reduce the number of genes to include in the signature matrix, we calculated the condition number (kappa)

over matrices of increasing size and selected the matrix with the lowest kappa. After retrieval of the mRNA scaling factors described

in the next paragraph, the values were normalized for mRNA abundance.

To estimate cell type proportions, we used robust linear modeling (RLM) and signature matrices with low condition numbers for a

set of 17 and 11 cell types (as found by the exhaustive searches described previously) for RNA-Seq andmicroarray data, respectively

(Figures 6B and S8B). The signature matrix for microarray data was also filtered for noisy genes as described previously. The two

signature matrices normalized by mRNA abundance, ABIS-Seq and ABIS-Microarray, can be directly used to deconvolute PBMC

transcriptomic data (Table S5). If using RNA-Seq, the gene expression values should be TPM. If using microarray, the dataset should

be reduced to only the genes present in the ABIS-Microarray signature matrix and the ‘‘target quantiles microarray’’ sheet from Table

S5 should be used for quantile normalization.

Absolute deconvolution validation
Three external datasets were collected to validate our signature matrices (for RNA-Seq and microarray deconvolution) (Figure S9).

1) The dataset from Zimmermann et al. (2016) provides both flow cytometry data and RNA-Seq data and the data are available

through ImmPort (http://www.immport.org) with accession number SDY67. Cell types proportions were retrieved from their B

cell, T regs and innate flow cytometry panels. 2) The dataset from Newman et al. (2015) was downloaded from GEO: GSE65133.

The dataset provides both microarray data and cell type proportions. 3) For the dataset of Mohanty et al. (2015), we downloaded

the microarray data from GEO: GSE9654, and flow cytometry data from ImmPort, accession number SDY404. We analyzed the

T cells and B cells panels (L1 and L4, respectively).
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The three external datasets contain both PBMC transcriptomic data and flow cytometry data where cell type proportions can be

obtained in relation to the PBMC fraction of blood. All the flow cytometry proportion extracted are available in Table S6.

DATA AND SOFTWARE AVAILABILITY

The accession number for the RNA-Seq data of the 29 immune cell types of the S4 cohort and PBMCs of the S13 cohort is

GEO: GSE107011. The microarray data of the PBMCs of the S13 cohort is available from GEO: GSE106898. Both mentioned

GEO repositories are accessible from the SuperSeries GEO: GSE107019. The microarray data from the vaccine cohort is available

from GEO: GSE107990.

A shiny application to perform absolute deconvolution is available from https://github.com/giannimonaco/ABIS.
Cell Reports 26, 1627–1640.e1–e7, February 5, 2019 e7

https://github.com/giannimonaco/ABIS

	RNA-Seq Signatures Normalized by mRNA Abundance Allow Absolute Deconvolution of Human Immune Cell Types
	Introduction
	Results
	Detailed Characterization of 29 Immune Cell Types and PBMCs
	Transcriptomics Analyses and Resources
	Dimensionality Reduction and Clustering
	Modules of Cell Type-Specific Genes
	Modules of Co-expression Genes
	Immune Cell-Specific HK Genes
	Comparison of Our Gene Expression Profiles with External Datasets
	Using Our Cell Type-Specific and Co-expression Modules to Analyze an Influenza Vaccine Cohort

	Transcriptome Composition
	mRNA Heterogeneity
	mRNA Abundance

	Absolute Deconvolution
	Search for the Most Suitable Cell Type Combination
	mRNA Normalization through RLM Deconvolution and Optimization
	Absolute Deconvolution for RNA-Seq PBMC Samples
	Absolute Deconvolution for Microarray PBMC Samples
	Benchmark of Five Deconvolution Methods
	Validation of Our Normalization Method and Signature Matrices


	Discussion
	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References
	STAR★Methods
	Key Resources Table
	Contact for Reagent and Resource Sharing
	Experimental Model and Subject Details
	Donors

	Method Details
	Antibody panel design
	Blood processing
	Antibody staining and immunophenotyping
	FACS Sorting
	RNA extraction and quantification
	RNA-Seq and microarray data generation

	Quantification and Statistical Analysis
	RNA-Seq and microarray data preprocessing
	Transcriptomics analyses
	Normalization for mRNA abundance
	Rationale for the TPMTMM normalization method
	Retrieval of mRNA scaling factor through RLM deconvolution and optimization
	Suitable cell types and signature matrices for absolute deconvolution
	Absolute deconvolution validation

	Data and Software Availability



