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ABSTRACT

We propose a generic framework for gene regula-
tory network (GRN) inference approached as a fea-
ture selection problem. GRNs obtained using Ma-
chine Learning techniques are often dense, whereas
real GRNs are rather sparse. We use a Tikonov regu-
larization inspired optimal L-curve criterion that uti-
lizes the edge weight distribution for a given target
gene to determine the optimal set of TFs associated
with it. Our proposed framework allows to incorpo-
rate a mechanistic active biding network based on
cis-regulatory motif analysis. We evaluate our reg-
ularization framework in conjunction with two non-
linear ML techniques, namely gradient boosting ma-
chines (GBM) and random-forests (GENIE), result-
ing in a regularized feature selection based method
specifically called RGBM and RGENIE respectively.
RGBM has been used to identify the main transcrip-
tion factors that are causally involved as master reg-
ulators of the gene expression signature activated in
the FGFR3-TACC3-positive glioblastoma. Here, we il-
lustrate that RGBM identifies the main regulators of
the molecular subtypes of brain tumors. Our analy-
sis reveals the identity and corresponding biologi-
cal activities of the master regulators characterizing

the difference between G-CIMP-high and G-CIMP-low
subtypes and between PA-like and LGm6-GBM, thus
providing a clue to the yet undetermined nature of
the transcriptional events among these subtypes.

INTRODUCTION

Changes in environmental and external stimuli lead to vari-
ations in gene expression during the proper functioning of
living systems. A vital role is played by the transcription
factors (TFs), which are proteins that bind to the DNA
in the regulatory regions of specific target genes. These
TFs can then repress or induce the expression of target
genes. Many such transcriptional regulations have been dis-
covered through traditional molecular biology experiments
and several of these high-quality mechanistic regulatory in-
teractions have been well documented in TF-target gene
databases (1–3).

With the availability of high-throughput experimental
techniques for efficiently measuring gene expression, such
as DNA micro-arrays and RNA-Seq, our aim now is to de-
sign computational models for reverse engineering of gene
regulatory networks (GRN) (4) from such data at genomic
scale. The accurate reconstruction of GRNs from diverse
expression information sources is one of the most impor-
tant problems in biomedical research (5). Primarily because
GRNs can reveal mechanistic hypotheses about differences
between phenotypes and sources of diseases (1), which ulti-
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mately helps in the identification of therapeutic targets. The
problem of inferring GRNs is also one of the most actively
pursued problems in computational biology (6) resulted in
several DREAM challenges.

This problem is complicated by the noisy and high-
dimensional nature of the data (7), which obscures the reg-
ulatory network with indirect connections. Another com-
mon challenge is to identify and model the non-linear inter-
actions among the TF-target genes in the presence of rela-
tively few samples compared to total number of target genes
(i.e. n � p, typical in high dimensional statistics (8)). The
majority of methods model the expression of an individual
target gene as either a linear or non-linear function of the
expression levels of TFs (9–12). They then combine the sub-
networks obtained for each target gene to construct the final
inferred GRN resulting often in dense networks, whereas in
reality, there are only a few transcriptional regulations be-
tween the TFs-target genes (6).

There is a plethora of research associated with the
problem of inferring GRNs from expression data (10–
18). Here, we briefly describe three state-of-the-art meth-
ods: ARACNE (19,20), GENIE (21) and ENNET (22)
which have been extensively utilized with real data (23,24).
ARACNE uses an information theoretic measure, mutual
information (25), between the expressions of two genes to
generate the corresponding edge weights in the inferred
GRN. However, the mutual information values are rarely
zero and are plagued by indirect relationships, resulting in
many false positives. ARACNE uses a statistical procedure,
namely bootstrapping (26), to obtain a minimum threshold
for edge weights corresponding to each TF and prunes all
those connections associated with a weight is less than the
threshold.

GENIE (21), ENNET (22) and SCENIC (27) belong to
the category of machine-learning (ML) based on feature se-
lection where the expression vector of each target gene is
considered as a dependent variable and the expression ma-
trix corresponding to the list of TFs are the independent
variables. GENIE (21), whose novelty is the application of
random-forests (RF) (8), is a ML technique that exploits
an ensemble of several decision trees to solve the regression
task. The advantage of RF is that it can capture non-linear
relations between the list of TFs and a given target gene and
overcomes the small n, large p problem. Recently, a more
accurate non-linear ML technique, the gradient boosting
machine (GBM) (28) was employed by ENNET (22) and
SCENIC (27) for inferring GRNs. ENNET also solves the
regression task using a decision tree. However, it builds the
model additively using a boosting procedure where, dur-
ing each iteration, it adds a new decision tree to the base
learner. Each tree is learned by optimizing the least squares
loss function between the expression of the dependent vari-
able and the estimated expression vector obtained from the
model.

GENIE participated in the DREAM4 and DREAM5
challenges and ENNET was proposed afterwards. More-
over, iRafNet (24) is also a RF based ML technique which
was proposed after DREAM challenges took place. All
these methods achieved much superior performance w.r.t.
AUpr and AUroc metrics in comparison to their competitors.
A major drawback of these ML methods (21–22,24,29) is

that due to lack of regularization a large number of TFs
have connections with an individual target gene. Despite
the fact that ML-based methods tend to have better per-
formance on simulated data, their success in real applica-
tions to uncover important regulators of biological states
has not been as wide as the co-expression approached based
on mutual information (30) or correlation (31). This is
probably due to the difficulties designing of suitable signifi-
cance thresholds that can be used to select candidate regula-
tory connections for the purposes of network interrogation
through Master Regulator Analysis (32) or Master Regu-
lator Activity (33). Moreover, most current ML-based ap-
proaches lack to explicitly model upstream regulators, i.e.
network nodes with no incoming connections.

Here, we propose a generic framework for GRN infer-
ence using decision tree based ML techniques, like GBM
and RF, as core models. The reverse-engineering procedure
infers an initial set of transcriptional regulations from ex-
pression data using either boosting of regression stumps
(GBM) or an ensemble of regression stumps (RF). In order
to select suitable thresholds to select the edges in the out-
put network we employ a notion used for identifying the
corner of the L-curve criterion (34) in Tikonov regulariza-
tion (35) on the edge weight distributions (RVI scores). This
enable us to select candidate true positive regulations with-
out the need to empirically compute the null distribution
of the edge weights function by bootstrapping, such as for
example in the case of ARACNE (19). We then re-iterate
once through the core GBM or RF model using this opti-
mal list of TFs for each target gene to obtain regularized
transcriptional regulations. This pruning step helps to re-
duce the falsely identified edges while sparsifying the GRN
network at the same time.

We also propose a novel heuristic procedure based to
identify upstream regulators. The proposed framework al-
lows the user to specify a priori mechanistic active bind-
ing network (ABN) of TFs and target genes based on cis-
regulatory analysis of active binding sites on the promot-
ers of target genes. This allows to filter-out indirect targets
and false positives due to just co-expression. In the pres-
ence of an ABN, the reconstructed GRN is a subgraph of it
whereas in the absence of such an ABN, the inferred GRN is
reconstructed from the expression data. The resulting GRN
is sparse, directed and weighted.

The proposed techniques based on our generic frame-
work are hereby referred as Regularized Gradient Boost-
ing Machine (RGBM) and Regularized GENIE (RGE-
NIE) for GBM and RF core models respectively. We eval-
uated RGBM and RGENIE on DREAM3, DREAM4
and DREAM5 Challenge datasets and simulated RNA-
Seq datasets. Both RGBM and RGENIE obtain superior
performance relative to ENNET and GENIE in terms of
higher values for AUpr and AUroc as well as the winner of
these competitions by up to 10–15%. RGBM outperforms
RGENIE on these datasets, which is expected as the perfor-
mance of ENNET surpasses that of GENIE.

RGBM has been used to identify the main regulators,
of the gene expression signature activated in the FGFR3-
TACC3 fusion-positive glioblastoma (36). Here, we evalu-
ate the accuracy of RGBM to identify true targets of one
these regulators by validating in vitro the top targets in its
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regulon. Moreover, we go further and perform a case study
by constructing the GRN for glioma tumors using gene ex-
pression profiles collected through the cancer genome atlas
(TCGA) along with an a priori mechanistic ABN(1) of TFs
and their corresponding targets with the goal of identify-
ing the main regulators of the molecular subtypes of glioma
using RGBM. Our analysis reveals the identity and corre-
sponding biological activities of the master regulators driv-
ing the transformation of G-CIMP-high into the G-CIMP-
low subtypes of IDH-mutant glioma and the main differ-
ences between PA-like and LGm6-GBM in the IDH-wild-
type glioma. This result is a first step to the yet undeter-
mined nature of the transcriptional events driving the evo-
lution among these novel glioma subtypes.

MATERIALS AND METHODS

A schematic representation of RGBM approach is illus-
trated in Figure 1. We first utilize a mechanistic active bind-
ing network (ABN) between TFs and their potential targets
if such a network is available or can be constructed. The
ABN is then fed as prior information to the proposed ML
framework. In the absence of an ABN, the GRN is inferred
only from the available expression data. A detailed descrip-
tion of the heterogeneous expression datasets that can be
handled by our proposed framework is given in Supplemen-
tary Section 1.

The scores obtained from the GBM model are used to
rank TFs based on their capability to potentially regulate a
target gene. We adopt the the relative variable importance
(RVI), it takes value between [0, 1], where a value of RVI(�)
= 1 indicates that the TF (�) was the only feature that was
required to explain the expression of the target gene among
the list of all TFs whereas a value of 0 for a TF indicates
that the TF was not regulating the expression of the given
target gene. These RVI scores serve as the edge weights be-
tween the list of TFs and the given target gene. We utilized
a modified version of the triangle method (37) to locate the
corner of discrete L-shaped RVI curve as shown in Figure
1B. All the TFs to the left of this position form the optimal
set of TFs for that target gene. We also identify the upstream
regulators (genes which are not controlled by any regulator
and have 0 in-degree in the inferred GRN) using a simple
heuristic on the maximum RVI (MRVI) score of all genes.
Finally, we re-iterate once through the boosting procedure
with the optimal set of TFs for each target gene to assem-
ble the final network. We describe the details of each step of
Figure 1 in the following subsections.

Building the ABN

To learn potential regulatory activities between TFs and
target genes in the glioma subtypes network, we merge con-
stitutive associations due to active binding sites (ABN) and
functional association due to contextual transcriptional ac-
tivity (Figure 1 A). This allows to filter out indirect associ-
ations due to just co-expression and false positives.

The active binding network (ABN) is reconstructed from
the collection of TF binding sites that are also active i.e.
falling into not methylated regions. Binding sites are pre-
dicted with the FIMO (Find Individual Motif Occurrences)

tool using 2532 unique motif PWMs (Position Weight Ma-
trices) obtained from Jaspar (38) corresponding to 1203
unique TFs (38–41). The active promoter regions are clas-
sified with ChromHMM (v1.10), a Hidden Markov Model
that classifies each genome position into 18 different chro-
matin states (nine states are considered open/active sites:
TssA, TssFlnkm, TssFlnkU, TssFlnkD, Tx, EnhG1, EnhG2,
EnhA1m, EnhA1) from 98 human epigenomes (42). A bind-
ing relationship is considered active if the TF motif signal
is significantly (FDR < 0.05) over-represented in the target
promoter region (±5 kb TSS, hg19) and, in the same posi-
tion (at least 1 bp overlapping), the chromatin state is clas-
sified as open/active. The ABN consists of 5,850,559 over-
lapping active sites corresponding to 1,874,570 unique TF
associations between 457 TFs and 12,985 target genes.

From the inference problem to a variable selection task

The input of the RGBM is a gene expression matrix E and,
optionally, the adjacency matrix of the ABN. In absence of
the ABN we assume that every TF can potentially regulate
each target gene in the expression matrix. An element of the
expression matrix E ∈ RN×p i.e. eij, i = 1. . .N and j = 1. . .p,
represents the expression value of jth gene in the ith sample.
Let Cj be the list of potential TFs i.e. for each target gene j ∈
{1, . . . , p}, we sub-divide the problem of inferring the GRN
into p independent tasks. For the jth sub-problem, we get
the sub-network corresponding to the outgoing edges from
the appropriate TFs to the target gene j. To generate this
sub-graph, we first create the dependent vector Yj = E[, j]
and a feature expression matrix i.e. matrix of independent
variables, Xj = E[, Cj] from the expression matrix E (Supple-
mentary Figure S2) Each of the p sub-problems can math-
ematically be formulated as:

Yj = h j (Xj : γ j ) + ε j , ∀ j ∈ {1, . . . , p} (1)

Here, εj represents random noise and hj(Xj; � j) is the para-
metric function that maps the TF expression Xj to target
(Yj) while optimizing the parameters � j. Our goal is to iden-
tify a small number of TFs which drive the expression of
the jth gene using the columns of Xj as input features. Es-
sentially, we have to solve a regression problem while in-
ducing sparsity in the feature space, resulting in a subset of
the list of TFs, which drive the expression of the jth target
gene. This problem, referred as feature or variable selection
is usually solved with a linear regression from the feature
space to the target space (43–46). Inducing sparsity, have
been utilized for GRN inference (15,47–48). These methods
can only capture linear relationships and fail to detect non-
linear interactions between the TFs and targets, thereby,
missing several true positive edges.

In our generic framework, we adopt two tree-based ML
methods, namely RF (8,49) and GBM (9) as they solve the
aforementioned problem using a non-linear mapping. Ad-
ditionally, they provide a scheme to generate relative vari-
able importance (RVI) score for each TF which allows to
rank the TFs based on their contributions. The RVI scores
are further used as edge weights for the sub-network ob-
tained from Cj and the jth target gene. The RVI score mea-
sures how useful the each TF is for fitting the expression of
jth target gene given the contribution of all the other TFs for
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Figure 1. Schematic representation of the RGBM approach. (A) First build the active binding network (ABN) and use it as a priori mechanistic network
of connections between TFs and target genes, if possible. (B) Illustration of the primary procedure utilized by RGBM. Step1 uses RVI score distribution
from a GBM model to rank TFs based on their ability to fit a given target gene. Step2 proposes a regularization step to identify the corner of the discrete
L-shaped RVI curve. This results in the optimal set of TFs for a target gene. The proposed regularization step helps to reduce the falsely identified edges
associated with a given target gene. It also identifies upstream regulators by using a simple heuristic cut-off on MRVI scores. Step3 is to re-iterate once
through the boosting procedure with the optimal set of TFs for each target gene. Step4 is to infer the regulatory sub-graph for each target gene. (C) The
final inferred GRN is obtained by combining the regulatory sub-graphs of all target genes and is much sparser than that obtained via ENNET which uses
unregularized GBM model to reverse engineer GRN.

that target. The RVI score for a TF � from the core Gradient
Boosting Model is computed as (28):

i t
j (Rt

l , Rt
r ) = wt

l w
t
r

wt
l + wt

r
(γ t

jl − γ t
jr )2

VI j (φ) =
T∑

t=1

δt
j (φ) · i t

j (Rt
l , Rt

r )

RVIGBM
j (φ) = VI j (φ)∑

�∈Cj
VI j (�)

Here, δt
j (φ) = 1, if TF � results in the optimal split for the

tth regression tree and the function δt
j (·) = 0 for all the other

TFs at iteration t, wt
l and wt

r are the number of observations
in the left (Rt

l ) and right (Rt
r ) branches of the tree and the

coefficients γ t
jk, k ∈ {l, r}, are the parameters of the deci-

sion tree as indicated in Equation 1 for the jth target gene.
In case of the least-squares (LS) loss, γ t

jl and γ t
jr are the av-

erages of all the pseudo-residuals (details in Supplementary
Section 2) (22,28) falling in regions Rt

l and Rt
r respectively.

Similarly, for least-absolute deviation (LAD) loss, γ t
jl and

γ t
jr are the median of all the pseudo-residuals (28) in the

disjoint regions Rt
l and Rt

r respectively.
The TF which results in the optimal split is the one which

maximizes the least squares improvement criterion (22,28),
i( ·, ·), for regression tree t. For each tree t, we select the TF
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which can best divide the remaining expressions (pseudo-
residuals) of the target gene into two distinct regions.

Similarly, in the case of RF, the RVI score can be repre-
sented (21) as:

i t
j (k) = wt

jkσ
2(Rt

jk) − wt
jklσ

2(Rt
jkl ) − wt

jkrσ
2(Rt

jkr )

VI j (φ) =
T∑

t=1

d∑

k=1

δt
jk(φ) · i t

j (k)

RVIRF
j (φ) = VI j (φ)∑

�∈Cj
VI j (�)

where k represents a node in the regression tree, wt
jk, wt

jkl

and wt
jkr correspond to number of samples in node k, the

left branch of k and right branch of k respectively, the func-
tion �2( · ) represents the variance of all the expression val-
ues in regions Rt

jk, Rt
jkl and Rt

jkr and d is total number of
nodes in the tth regression tree for target gene j. The overall
importance of TF � is then computed by summing the i( · )
values of all tree nodes where this variable is used to split.
To determine a split into disjoint regions Rt

jkl and Rt
jkr , we

select the TF (�) which maximizes the function i( · ), thereby
indicating that values falling within each region have small
variance when compared to the variance obtained from all
the expression values at that node. In GENIE3 (21), the au-
thors set δt

jk(φ) as 1 for TF � if it maximizes the i t
j (k) crite-

rion and set it to 0 for all other TFs. The TFs that are not
selected at all obtain a value of 0 as their importance, and
those that are selected close to the root nodes of several trees
typically obtain high scores.

The RVI score for a TF is unit-less, as it is the contri-
bution of that TF given the contribution of all other TFs
for fitting the expression of a given target gene as observed
from the equations above. It takes values between [0, 1]. A
large RVI score suggests with high confidence that the corre-
sponding TF is regulating the expression of the given target
gene.

The core of the GBM model is explained in detail in
the Supplementary Section 2 and we refer the readers to
GENIE (21) for a detailed description about the usage of
RF for GRN inference. ENNET (22) utilized the LS-Boost
(Supplementary Algorithm 1:S1) as GBM model as core
function for reverse engineering of gene regulatory network.
In our proposed framework, we provide the user with the
flexibility of utilizing either LS-Boost (Algorithm S1) or
LAD-Boost (Algorithm S2) as the core GBM model for
RGBM. This is because it was shown in (28) that LS-Boost
performs extremely well for normally distributed expression
values whereas LAD-Boost performs better for slash dis-
tributed values. Our framework also works well in combina-
tion with a core RF model resulting in a regularized version
of GENIE(21) namely RGENIE.

We report below the proposed regularization steps in
combination with the core GBM model.

Main regularization steps

An important aspect of GRN is sparsity (6), i.e. there are
only a few TFs which regulate a target gene and there are

a few genes which have no regulations or we can have 0
in-degree (6) nodes in the inferred GRN. Thus, the pro-
cedure for reverse engineering GRNs should return sparse
networks and should be able to detect such 0 in-degree up-
stream regulators. The adjacency matrix obtained from core
GBM model can be quite dense, as shown in Supplementary
Figure S3.

However, when adjacency matrix is converted into an or-
dered edge-list (ranked in descending order based on edge
weights), several of the top ranked connections are indeed
true positives, whereas many others small weighted edges
are false positives. Hence, there is a possibility to reduce the
number of falsely identified transcriptional regulations be-
tween the TFs and targets as illustrated below.

The sorted RVI score curve for an individual target
gene approximately follows an exponential distribution as
demonstrated empirically in Supplementary Figure S4 for
GBM and in Supplementary Figure S7 for RF.

In order to identify the optimal set of TFs for each target
gene, RGBM uses an idea similar to that used for identifying
the corner in discrete L-curve criterion (34,50) in Tikonov
regularization (35). The problem in Tikonov L-curve is to
identify the corner of a discrete L-curve where the surface
of the discrete L-curve is monotonically decreasing. Several
algorithms have been proposed for computing the corner
of a discrete L-curve, taking into account the need to cap-
ture the overall behavior of the curve and avoiding the local
corners (34,51–52). RGBM uses a modified variant of the
triangle method (37). Specifically, let Pl ,Pm and Pn be three
points on the RVI curve satisfying l < m < n and let vm, l
denote the vector from Pm to Pl . Then, we define the ori-
ented angle �(l, m, n) ∈ [0, �] associated with the triplet as
the angle between the two vectors vm, n and vm, l i.e. �(l, m,
n) = ∠(vm, n, vm, l). With this definition, an angle �(l, m, n)
= � corresponds to the point Pl , which determines the op-
timal position (optimal number of TFs) on the RVI curve.
The key idea of the triangle method is to consider the fol-
lowing triples of L-curve points: (Pl ,Pm,Pn), l = 1, . . . , n
− 2, m = l + 1, . . . , n − 1, where n corresponds to the TF
with the least non-zero RVI score (RVIj( · )) for the jth target
gene. By using this idea, we identify as the corner the first
triple where the oriented angle �(l, m, n) is either equal to
� or is maximum. If the angle �(l, m, n) = �, then that part
of the RVI curve is already “flat” w.r.t. the least contribut-
ing TF and the position l represents the optimal number of
TFs for the jth target gene. All the TFs to the left of posi-
tion l (including l) form the optimal set of TFs that regulate
the target gene j as shown in Figure 3. The worst-case com-
plexity of the triangle method is O(p2). However, for a Pl , if
∀Pm, the oriented angles θ (l, m, n) ≥ 7π

8 then optimal cor-
ner corresponds to this l as the L-curve is almost flat from
l and hence considered flat from Pl (34). Thus, all TFs to
left of Pl and including Pl constitute the list of regulators
for that target gene. This acts as an early stopping criterion
and helps to reduce the complexity of the triangle method.
The majority of the RVI curves have an approximately ex-
ponential distribution, so we can quickly reach the position
where the oriented angle first becomes � and avoid unnec-
essary computations as indicated in Algorithm 1. From our
experiments, we empirically found that the proposed tech-
nique requires much lower number steps on average to infer
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the optimal set of TFs for each target gene because of the
exponential nature of the RVI score distribution. Moreover,
the computation of the optimal set of TFs for each target
gene can be performed in parallel.

Another key feature of RGBM is the detection of up-
stream regulators, i.e. nodes which have no incoming edges
in the inferred GRN, for which we devised a simple heuris-
tic. From Figure 4A, we observe that for several target genes
the maximum RVI (MRVI) score is >0.5. But there are a
few outlier genes for which the MRVI score is much smaller
(O(10−1) or O(10−2)) indicating that the given set of TFs
cannot drive the expression of these target genes. In order
to detect these outliers, we transform the MRVI score into
the inverse maximum relative variable importance (IMRVI)
score using the inverse cumulative density function (
( · ))
on the MRVI score distribution as illustrated below:

IMRVI j = 
−1(RMVI j ) (2)

By using this function it becomes easy to identify the heuris-
tic cut-off � = �IMRVI − 1.64 × �IMRVI corresponding to
≈5th percentile of the IMRVI score distribution that is al-
located to the outliers. All the genes whose IMRVI score is
to the left of the ‘red’ line in Figure 4 are considered as can-
didate outliers. For these candidate outliers, if the cardinal-
ity (#(·)) of the optimal set of TFs satisfies: #M[, j ] ≥ #(Cj )

2 ,
then it is an indication that its difficult for this set of TFs to
fit the expression of the given target gene as more than half

the set of TFs are getting low RVI scores, close to the MRVI
score for that target gene.

We select and prune out such genes as 0 in-degree tar-
gets, or upstream regulators, in the final inferred GRN. For
example, for the 5th target gene, the MRVI score is ≈0.2,
which is very close to the smallest MRVI score in MRVI
score distribution as depicted in Figure 4 A. Moreover, there
are 51 TFs with relatively small non-zero RVI scores for the
5th target gene, as shown in Figure 2. Hence, the 5th gene
is considered an upstream regulator in the inferred GRN.

Once we have obtained the optimal set of TFs for an in-
dividual target gene, we re-iterate through the core GBM
model. All these steps together form the RGBM technique
for re-constructing GRNs as showcased in Algorithm 2 and
illustrated via Figure 5.

Post-transcriptional TF activity

TF activity is determined using an algorithm that allows
computationally inferring protein activity from gene ex-
pression profile data on an individual sample basis. The ac-
tivity of a TF, defined as a metric that quantifies the activa-
tion of the transcriptional program of a specific regulator in
each sample Si, is calculated as follows:

Act(Si , TF) = 1
U

U∑

k=1

t+
ki − 1

V

V∑

j=1

t−
j i (3)

where t+
ki is the expression level of the kth positive target of

the MR in the ith sample, t−
j i is the expression level of the

jth negative target of the MR in the ith sample, U (V) the
number of positive (negative) targets present in the regulon
of the considered MR. If Act(Si, TF) > 0, the TF is active in
that particular sample. f Act(Si, TF) < 0, the TF is inversely
activated and if Act(Si, TF) ≈ 0 it is non-active. To identify
the main Master Regulators of glioma subtypes reported in
Section 4, we use supervised analysis of the activity function
defined in equation (3) using the Wilcoxon test (53).

Cell culture, lentiviral infection and quantitative RT-PCR

Human astrocytes (HA) (54) were cultured in DMEM sup-
plemented with 10% fetal bovine serum (FBS, Sigma). Cells
were routinely tested for mycoplasma contamination us-
ing the Mycoplasma Plus PCR Primer Set (Agilent Tech-
nologies) and were found to be negative. Cell authentica-
tion was performed using short tandem repeats (STR) at the
ATCC facility. Human astrocytes were infected either with
the lentiviral vector pLOC–vector or pLOC–PPARGC1A.

Total RNA was prepared using the Trizol reagent (Invit-
rogen) and cDNA was synthesized using SuperScript II Re-
verse Transcriptase (Invitrogen) as described in (32). Quan-
titative RT–PCR (qRT–PCR) was performed with a Roche
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Figure 2. Sorted RVI score curves for the first 16 targets of Network 1 from DREAM4 challenge. The target genes are ordered in row-format from left
to right (i.e. 1–4 target genes in row 1, 5–8 target genes in row 2, etc.) We can empirically observe that the sorted RVI curves ≈ follows an exponential
distribution w.r.t. the number of TFs for each target gene. This is further verified by a near linear fit to the log (RVI) scores w.r.t. the set of TFs as showcased
in Supplementary Figure S4. Thus, there are only a few TFs which are strongly regulating the expression of a target gene.

480 thermal cycler, using SYBR Green PCR Master Mix
(Applied Biosystems). Primers used in qRT–PCR are listed
in Supplementary Table S4. qRT–PCR results were ana-
lyzed by DDCt method using 18S as housekeeping gene.

RESULTS AND DISCUSSION

For GBM based RGBM, we use the same parameters cor-
responding to the optimal parameter settings for ENNET
(22). Similarly, for the RF based RGENIE, we use the pa-
rameters which correspond to the optimal parameter set-
ting for GENIE (21). Additional details about the parame-
ter setting for proposed RGBM and RGENIE models can
be found in Supplementary Section 4.

RGBM outperforms state-of-the-art on DREAM Challenge
Data

We assessed the performance of the proposed RGBM
models using LS-Boost and LAD-Boost as core models
and RGENIE using RF as core model on universally ac-
cepted benchmark networks of 100 or more genes from the
DREAM3, DREAM4 and DREAM5 challenges (55–57)
and compared them with several state-of-the-art GRN in-
ference methods. For the purpose of comparison, we se-
lected several methods including ENNET (22), GENIE
(21), iRafNet (24), ARACNE (19) and the winner of each
DREAM challenge. Among all the DREAM challenge net-
works, we performed experiments on in-silico networks of
size 100 from DREAM3 and DREAM4, and on three
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Figure 3. Optimal set of TFs obtained from the RVI curve of gene ‘G1’ for
Network 1 from DREAM4 challenge using a triangle method (37) based
technique which is commonly employed for identifying the corner in the
Tikonov L-curve. We can see that the right most non-negative RVI score
is at an x-axis position close to 80. This indicates that there are at least 20
TFs which had RVI(�) = 0 for gene ‘G1’.

Figure 4. Subfigure A represents the MRVI score distribution for all the
100 targets of Network 1 from DREAM4 challenge. Subfigure B corre-
sponds to inverse cumulative density function of the MRVI scores (IM-
RVI). Here the ‘red’ vertical line represents the heuristic cut-off � s.t. all
targets whose MRVI score is less than � are selected as 0 in-degree genes
and correspond to 5 percentile of the distribution.

benchmark (out of which two are real) networks from the
DREAM5 challenge.

The DREAM3 and DREAM4 challenges comprise five
in-silico networks whose expression matrices E are sim-
ulated using GeneNetWeaver (58) software. Benchmark
networks were constructed as sub-networks of systems of
transcriptional regulations from known model organisms
namely Escherichia coli and Saccharomyces cerevisiae. In
our experiments, we focus on networks of size 100, which
are the largest in the DREAM3 suite. There are several ad-
ditional sources of information available for these networks,
such as knockout, knockdown, and wildtype expressions
apart from the time-series information. However, most of
the state-of-the-art techniques do not necessarily utilize all
these heterogeneous information sources. We showcase the

best results generated for the DREAM3 and DREAM4
challenge networks using the optimal combination of in-
formation sources for different GRN inference methods in
Table 1.

We observe from Table 1 that the best source of in-
formation for almost all the GRN inference methods
are the knockout, knockdown, and wildtype expressions
for DREAM3 challenge. But in case of the DREAM4
challenge, all available heterogeneous information sources
are useful for RGBM models, whereas knockout, knock-
down, and wildtype expressions are useful for ENNET and
ARACNE, while the knockout and wildtype expression are
optimal for RGENIE and GENIE. From Table 1, we show-
case that ARACNE performs the worst on all DREAM3
and DREAM4 challenge datasets. RF based methods GE-
NIE, iRafNet and RGENIE are inferior to GBM based
methods ENNET and RGBM, for both the DREAM3
and DREAM4 challenge. But, RGENIE significantly out-
performs GENIE w.r.t quality metrics AUpr and AUroc on
all DREAM3 and DREAM4 challenge datasets. Similarly,
RGBM using LS-Boost as the core model significantly out-
performs ENNET as well as the winner on several networks
for both of these challenges.

Both RGBM and RGENIE gain maximum benefit from
the proposed regularization steps by removing falsely iden-
tified edges and can efficiently detect 0 in-degree genes. As a
result these methods gain a lot in terms of precision and re-
call. However, RGBM (LS-Boost) clearly performs the best
on the majority of the datasets from the DREAM3 and
DREAM4 challenge.

Figure 6 illustrates the optimal number of TFs identified
by proposed Algorithm 1 for each target gene and passed
as network M either to Algorithm S1 or Algorithm S2 to
infer the final GRN for Network 1 of DREAM4 challenge.
We observe that several genes (including ‘G5’, ‘G26’, ‘G40’,
‘G42’ etc.) have 0 TFs connected to them and inferred as the
0 in-degree upstream regulators.

Two benchmark networks in the DREAM5 (6) chal-
lenge of different sizes and structure were generated using
a Prokaryotic model organism (E. coli) and a Eukaryotic
model organism (S. cerevisiae) corresponding to Network
3 and Network 4 respectively. The time-series data of only
Network 1 was simulated in-silico, the two other sets of ex-
pression data were measured in real experiments. DREAM5
was the first challenge where participants were asked to in-
fer GRNs for large-scale real datasets, i.e. for O(103) target
genes and O(102) known TFs. Gold standard networks were
obtained from two sources: the RegulonDB database (59),
and the Gene Ontology (GO) annotations (60). The E.coli
network of the DREAM5 challenge consisted of 4297 tar-
get genes, 296 TFs and the corresponding gold standard has
2066 interactions. Similarly, the S. cerevisiae network com-
prises 5667 targets, 183 TFs and the corresponding gold
standard has 2528 regulatory interactions (6). The results
of all the inference methods for DREAM5 expression data
using the optimal combination of information sources are
summarized in Table 2. Network 2 from DREAM5 was
ignored as the gold standard network was not well con-
structed (6,22).

RGBM using LS-Boost core model gives better results
than other methods w.r.t evaluation metrics AUpr and AUroc
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Figure 5. Final inferred GRN (Afinal) obtained as a result of RGBM Algorithm (Algorithm 2) on Network 1 for DREAM4 challenge. The final inferred
GRN has 1144 edges between 100 nodes whose edge weights are >3.3 × 10−15 (machine precision). Afinal is much more sparse in comparison to A1 which is
obtained after initial GBM modeling. In network Afinal, we have greatly reduced the number of falsely identified transcriptional regulations in A1. We also
identified 4 dense communities or clusters in inferred network A1 using kernel spectral clustering (71). Nodes belonging to a cluster and edges originating
from the nodes in these clusters have the same color. The size of each node is proportional to its out-degree. We observe that the communities present in
Afinal have fewer edges and thus have much lower density than the clusters in A1.
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Figure 6. Optimal number of TFs for each target gene obtained from pro-
posed Algorithm 1 for Network 1 of DREAM4 challenge.

on Network 4 as illustrated in Table 2. It easily defeats
the winner (GENIE) of the DREAM5 challenge and out-
performs recent state-of-the-art GRN inference methods

iRafNet and ENNET. Similarly, the performance of RGE-
NIE surpasses that of GENIE. However, RGBM performs
much better than RGENIE on Network 4 whereas it is de-
feated by RGENIE w.r.t. AUpr for Network 3. We observe
from Table 1 and Table 2 that RGBM based on the LS-
Boost model usually has a better performance than RGBM
based on the LAD-Boost model for both in-silico and real
datasets. Hence, for all further experimental comparisons,
we will use RGBM based on the core LS-Boost model.

Interestingly, the predictions for real expression profiles
(DREAM5 challenge––Networks 3 and 4) result in ex-
tremely low precision-recall values as depicted in Table 2.
One of the reasons for the poor performance of all the in-
ference methods for such expression data is the fact that ex-
perimentally derived pathways, and consequently gold stan-
dards obtained from them, are not necessarily complete, re-
gardless of how well the model organism is known. Addi-
tionally, there are regulators of gene expression other than
TFs, such as miRNA and siRNA, which also drive the ex-
pression of these genes.
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Table 1. Comparison of RGBM and RGENIE with a other of inference methods on DREAM3 and DREAM4 networks of size 100

Methods Data used DREAM3 experiments

Network 1 Network 2 Network 3 Network 4 Network 5

AUpr AUroc AUpr AUroc AUpr AUroc AUpr AUroc AUpr AUroc

RGBM (LS-Boost) KO,KD,WT 0.699 0.903 0.888 0.965 0.597 0.900 0.571 0.861 0.460 0.787
RGBM (LAD-Boost) KO,KD,WT 0.683 0.903 0.870* 0.963* 0.562* 0.900 0.535* 0.853* 0.400 0.770
ENNET KO,KD,WT,MTS 0.627 0.901 0.865+ 0.963+ 0.552+ 0.892 0.522+ 0.842 0.384 0.765
RGENIE KO,KD,WT 0.521 0.870 0.821− 0.899 0.456 0.812 0.478− 0.778 0.356 0.718
GENIE KO,KD,WT 0.430 0.850 0.782 0.883 0.372 0.729 0.423 0.724 0.314 0.656
iRafNet KO,KD,WT 0.528 0.878 0.812 0.901 0.484 0.864 0.482 0.772 0.364 0.736
ARACNE KO,KD,WT 0.348 0.781 0.656 0.813 0.285 0.669 0.396 0.662 0.274 0.583
Winner (72) KO, WT 0.694 0.948 0.806 0.960 0.493 0.915 0.469 0.853 0.433 0.783

Methods Data Used DREAM4 Experiments

Network 1 Network 2 Network 3 Network 4 Network 5

AUpr AUroc AUpr AUroc AUpr AUroc AUpr AUroc AUpr AUroc

RGBM (LS-Boost) KO,KD,WT,MTS 0.709 0.936 0.561 0.878* 0.525 0.911 0.616 0.903 0.450 0.893
RGBM (LAD-Boost) KO,KD,WT,MTS 0.682* 0.924* 0.525* 0.895 0.490* 0.907* 0.566* 0.903 0.413* 0.885*
ENNET KO,KD,WT 0.604+ 0.893 0.456+ 0.856+ 0.421+ 0.865+ 0.506+ 0.878+ 0.264+ 0.828+

RGENIE KO,WT 0.448 0.902 0.330 0.792 0.374 0.834− 0.362− 0.840 0.218− 0.773−
GENIE KO,WT 0.338 0.864 0.309 0.748 0.277 0.782 0.267 0.808 0.114 0.720
iRafNet KO,TS 0.552 0.901 0.337 0.799 0.414 0.835 0.421 0.847 0.298 0.792
ARACNE KO,KD,WT 0.279 0.781 0.256 0.691 0.205 0.669 0.196 0.699 0.074 0.583
Winner (73) KO 0.536 0.914 0.377 0.801 0.390 0.833 0.349 0.842 0.213 0.759

Here, we provide the mean AUpr and AUroc values for 10 random runs of different inference methods. Here, KO, knockout; KD, knockdown; WT, wildtype; MTS, modified
smoothed version of the time-series data. The best results are highlighted in bold. *, +, − represent the quality metric values where RGBM (LAD-Boost), ENNET and RGENIE
techniques, respectively outperform the winner of DREAM3 and DREAM4 challenges.

Table 2. Comparison of RGBM and RGENIE with inference methods on DREAM5 networks of varying sizes

Methods Data used DREAM5 experiments

Network 1 Network 3 Network 4

AUpr AUroc AUpr AUroc AUpr AUroc

RGBM (LS-Boost) KO,Exp 0.537 0.846* 0.086 0.633* 0.048 0.546
RGBM (LAD-Boost) KO,Exp 0.513* 0.842* 0.084 0.628* 0.047* 0.544*
ENNET KO,Exp 0.432+ 0.857 0.069 0.632+ 0.021 0.532+

iRafNet KO,MTS,Exp 0.364 0.813 0.112 0.641 0.021 0.523
RGENIE Exp 0.343− 0.821− 0.104− 0.623− 0.022− 0.524−
GENIE (Winner) Exp 0.291 0.814 0.094 0.619 0.021 0.517
TIGRESS (15) KO,Exp 0.301 0.782 0.069 0.595 0.020 0.517
CLR (18) Exp 0.217 0.666 0.050 0.538 0.018 0.505
ARACNE Exp 0.099 0.545 0.029 0.512 0.017 0.500

Here, we provide the mean AUpr and AUroc values for 10 random runs of different inference methods. Here, KO, knockout; KD, knockdown; WT, wildtype;
MTS, modified smoothed version of the time-series data; Exp, steady-state gene expression. The best results are highlighted in bold. *, + and − represent
the quality metric values where RGBM, ENNET and RGENIE techniques respectively defeat the winner of DREAM5 challenge, i.e. GENIE.

RGBM outperforms state-of-the-art on synthetic RNA-Seq
data

We conducted additional experiments on simulated RNA-
Seq data. We used our R package synRNASeqNet (https:
//cran.r-project.org/web/packages/synRNASeqNet) to gen-
erate RNA-Seq expression matrices. It uses a stochastic
Barabási-Albert (BA) model (61) to build random scale-
free networks using a preferential attachment mechanism
with power exponent 	 and simulated RNA-Seq counts
from a Poisson multivariate distribution (62). For our exper-
iments, we generated 5 RNA-Seq expression (E) matrices
comprised of 500 RNA-Seq counts for 50 target genes using
power exponent values 	 ∈ {1.75, 2, 2.25, 2.5, 2.75} respec-
tively and repeated this procedure 10 times. In this experi-
ment, we are not provided with any additional information,
such as knockout or knockdown, and the active binding
network (ABN) is not present. We use evaluation metrics
like AUpr and AUroc to compare the proposed RGBM (using
LS-Boost) and RGENIE with state-of-the-art GRN infer-
ence methods, including ENNET, GENIE and ARACNE.

Figure 7 illustrates the performance of various GRN infer-
ence methods w.r.t. ROC and PR curves.The performance
of RGBM and RGENIE is compared with ENNET, GE-
NIE and ARACNE for five different experimental settings
as shown in Table 3.

Here, the evaluation metrics AUroc and AUpr represent the
mean value of these evaluation metrics for 10 random runs
of each setting. We can observe from Figure 7 and Table
3 that RGBM performs the best as preferential attachment
increases and the degree distribution becomes more skewed
for the synthetic RNA-Seq networks. However, for smaller
values of 	, the RF based inference methods GENIE and
RGENIE are better than RGBM. But their performance de-
creases drastically w.r.t. the evaluation metric AUpr for in-
creasing values of preferential attachment exponent 	, sug-
gesting that RF based GRNs are obscured by false iden-
tified edges and are inferior to GBM based methods when
trying to reverse engineer GRNs where very few TFs (hubs)
are regulating a majority of the target genes.
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Figure 7. Comparison of RGBM and RGENIE with ENNET, GENIE3 and ARACNE w.r.t. AUroc and AUpr curves for five different RNA-Seq experi-
ments.
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Table 3. Comparison of proposed RGBM and RGENIE techniques with ENNET, GENIE and ARACNE GRN inference methods w.r.t. evaluation
metrics AUroc and AUpr for reverse-engineering GRNs from RNA-Seq counts where the underlying ground-truth network follows a BA preferential
attachment model with exponent 	. Here no additional information (ABN or knockout or knockdown) is available

Methods RNA-Seq experiments

Exponent 	 = 1.75 Exponent 	 = 2 Exponent 	 = 2.25 Exponent 2.5 Exponent 2.75

AUpr AUroc AUpr AUroc AUpr AUroc AUpr AUroc AUpr AUroc

RGBM 0.575 0.808 0.470 0.789 0.498 0.700 0.500 0.695 0.506 0.709
ENNET 0.566 0.802 0.454 0.780 0.495 0.685 0.494 0.684 0.494 0.684
RGENIE 0.605 0.846 0.528 0.785 0.270 0.652 0.272 0.626 0.274 0.641
GENIE 0.622 0.822 0.507 0.777 0.235 0.607 0.245 0.610 0.241 0.601
ARACNE 0.065 0.575 0.053 0.556 0.056 0.600 0.055 0.600 0.055 0.600

In both DREAM challenge and synthetic RNA-Seq ex-
periments, GBM based RGBM outperforms almost always
the RF based RGENIE method. Hence, we only used the
proposed RGBM method for additional experiments as de-
picted in Supplementary Section 5 and in our real case-
study to identify the master regulators of different glioma
cancer subtypes.

RGBM identifies the master regulators of glioma cancer sub-
types

The results in the previous paragraphs have shown that
RGBM is a promising technique to efficiently recover the
regulatory structure of small and large gene networks. Here,
we apply RGBM for the identification of Master Regulators
of tumor subtypes in human glioma, the most frequent pri-
mary brain tumor in adults (63). In the cancer field, master
regulators (MR) have been defined as gene products (mostly
TFs) necessary and sufficient for the expression of particu-
lar tumor-specific signatures typically associated with spe-
cific tumor phenotypes (e.g. pro-neural vs. mesenchymal).
In the case of malignant gliomas, reverse engineering has
been used to successfully predict the experimentally vali-
dated transcriptional regulatory network responsible for ac-
tivation of the highly aggressive mesenchymal gene expres-
sion signature of malignant glioma (32). A master regulator
gene can be defined as a network hub whose regulon ex-
hibits a statistically significant enrichment of the given phe-
notype signature, which expresses a cellular phenotype of
interest, such as tumor subtype. MARINa (MAster Regu-
lator INference algorithm) is an algorithm to identify MRs
starting from a GRN and a list of differentially expressed
genes (64). This specific algorithm was successfully applied
previously (32) to identify Stat3 and C/EBP
 as the two
TFs hierarchically placed at the top of the transcriptional
network of mesenchymal high-grade glioma. We use MA-
RINa in conjunction with the GRN inferred using RGBM
on a Pan-glioma dataset.

Recently, the Pan-Glioma Analysis Working Group of
the The Cancer Genome Atlas (TCGA) project analyzed
the largest collection of human glioma ever reported (23).
It has been shown that, using a combination of DNA copy
number and mutation information, together with DNA
methylation and mRNA gene expression, human gliomas
can be robustly divided into seven major subtypes defined as
G-CIMP-low, G-CIMP-high, Codel, Mesenchymal-Like,
Classic-Like, LGm6-GBM and PA-like (23). The first key
division of human glioma is driven by the status of the

IDH1 gene, whereby IDH1 mutations are typically charac-
terized by a relatively more favorable clinical course of the
disease. IDH1 mutations are associated with a hypermethy-
lation phenotype of glioma (G-CIMP, (65)). However, our
Pan-glioma study reported that IDH-mutant tumors lack-
ing co-deletion of Chromosome 1p and 19q are a hetero-
geneous subgroup characterized predominantly by the G-
CIMP-high subtype and less frequently by the G-CIMP-
low subgroup. This last is characterized by relative loss of
the DNA hypermethylation profile, worse clinical outcomes
and likely represents the progressive evolution of G-CIMP-
high gliomas toward a more aggressive tumor phenotype
(23). However, the transcriptional network and the set of
MRs responsible for the transformation of G-CIMP-high
into G-CIMP-low gliomas remained elusive.

Among the large group of IDH-wildtype tumors (typi-
cally characterized by a worse prognosis when compared to
IDH-mutant glioma), we discovered that, within a particu-
lar methylation-driven cluster (LGm6) and at variance with
the other methylation-driven clusters of IDH-wildtype tu-
mors, the lower grade gliomas (LGG) display significantly
better clinical outcome than GBM tumors (GBM-LGm6).
We defined these LGG tumors as PA-like based on their ex-
pression and genomic similarity with the pediatric tumor
Pylocitic Astrocytoma. However, for the transition from G-
CIMP-high into G-CIMP-low gliomas, the determinants
of the malignant progression of PA-like LGG into GBM-
LGm6 remained unknown. Here, we applied our novel com-
putational RGBM approach to infer the MRs responsi-
ble for the progression of G-CIMP-high into G-CIMP-low
IDH-mutant glioma and those driving progression of PA-
like LGG into LGm6-GBM IDH-wildtype tumors respec-
tively.

Toward this aim, we first built the Pan-glioma network
between 457 TFs and 12 985 target genes. An ABN network
was to used as prior for the RGBM algorithm and for the ex-
pression matrix we used the TCGA Pan-glioma dataset (23)
including 1250 samples (463 IDH-mutant and 653 IDH-
wild-type), 583 of which were profiled with Agilent and
667 with RNA-Seq Illumina HiSeq downloaded from the
TCGA portal. The batch effects between the two platforms
were corrected as reported in (66) using the COMBAT algo-
rithm (67) having tumor type and profiling platform as co-
variates. Subsequently, quantile normalization is applied to
the whole matrix. The inferred Pan-glioma RGBM network
is shown in Supplementary Figure 8 (F8) and contains 39
192 connections with an average regulon size of 85.8 genes.
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Figure 8. Average MR activity in the seven glioma subtypes.

To identify the MRs displaying the highest differential ac-
tivity for each group, we ranked MR activity for each TF
among for all the seven glioma subtypes.

The top MRs exhibiting differential activity among the
glioma groups are shown in Supplementary Figure S9
and their average activity in Figure 8. We found that
RGBM-based MR analysis efficiently separates an IDH-
mutant dominated cluster of gliomas including each of
the three IDH-mutant subtypes (G-CIMP-high, G-GIMP-
low and Codel) from an IDH-wildtype group includ-
ing Mesenchymal-Like, Classic-Like and LGm6-GBM.
This finding indicates that RGBM correctly identifies
biologically-defined subgroups in terms of the activity of
MRs. The MRs characterizing IDH-mutant glioma include
known regulators of cell fate and differentiation of the ner-
vous system, therefore, indicating that these tumors are
driven by a more differentiated set of TFs that are re-
tained from the neural tissue of origin (e.g. NEUROD2,
MEF2C, EMX1, etc.). Conversely, the MRs whose activ-
ity is enriched in IDH-wildtype glioma are well-known
TFs driving the mesenchymal transformation, immune re-
sponse and the higher aggressiveness that characterizes the
IDH-wildtype glioma (STAT3, CEBPB, FOSL2, BATF
and RUNX2, etc). Remarkably, while the G-CIMP-low
subtype showed a general pattern of activation of MRs
that includes this subtype within the IDH-mutant group
of gliomas, when compared to the G-CIMP-high subtype,
G-CIMP-low glioma displays a distinct loss of activation
of neural cell fate/differentiation-specific MRs (see for ex-
ample the activity of the crucial neural TFs NEUROD2,
MEF2C and EMX1) with corresponding activation of a
small but distinct set of TFs that drive cell cycle progres-
sion and proliferation (E2F1, E2F2, E2F7 and FOXM1).
This finding indicates that the evolution of the G-CIMP-
high into the G-CIMP-low subtype of glioma is driven
by (i) loss of the activity of neural-specific TFs and (ii)

gain of a proliferative capacity driven by activation of cell
cycle/proliferation-specific MRs.

Concerning the PA-like into LGm6-GBM, we note that,
despite being sustained by an IDH-wildtype status, PA-like
LGG cluster within the IDH-mutant subgroup of glioma,
with higher activity of Neural cell fate/differentiation-
specific MRs and inactive Mesenchymal-immune response
MRs. Therefore, the evolution of PA-like LGG into LGm6-
GBM is marked by gain of the hallmark aggressive MR ac-
tivity of high grade glioma with corresponding loss of the
MRs defining the neural cell of origin of these tumors.

Taken together, the application of the RGBM approach
to the recently reported Pan-Glioma dataset revealed the
identity and corresponding biological activities of the MRs
driving transformation of the G-CIMP-high into the G-
CIMP-low subtype of glioma and PA-like into LGm6-
GBM, thus, providing a clue to the yet undetermined nature
of the transcriptional events driving the evolution among
these novel glioma subtypes.

RGBM identifies the master regulators of the mechanism of
action of FGFR3-TACC3 fusion in glioblastoma

FGFR3-TACC3 fusions are recurrent chromosomal rear-
rangement that generate in-frame oncogenic gene fusions
first discovered in glioblastoma (GBM) (68) and subse-
quently found in many other tumors. Currently, FGFR3-
TACC3 gene fusions are considered one the most recur-
rent chromosomal translocations across multiple types of
human cancer (69). Recently, we used RGBM to identify
PGC1	 and ERR� as the key MRs that are necessary for
the activation of mitochondrial metabolism and oncogene-
sis of tumors harboring FGFR3-TACC3 (36).

In this study, we have extensively validated the compu-
tational approach using a large set of experimental sys-
tems spanning from mouse and human cell cultures in vitro
to tumor models of Drosophila, mice and humans in vivo
(36). Here, we selected the set of 627 IDH-wildtype glioma
from the expression dataset described above to build the
RGBM network. To have a more comprehensive set of reg-
ulators, even without the availability of the PWMs, we used
a predefined list of 2137 gene regulators/transcription fac-
tors (TRs) and an all-ones matrix as ABN, i.e. no prior
mechanistic information. The final network contains 300
969 edges (median regulon size: 141) between the 2137
regulators and the 12 985 target genes. The key regula-
tors of this oncogenic alteration were identified as those
with the most significant differential activity between eleven
TACC3-FGFR3 fusion-positive samples and 616 fusion-
negative samples (Supplementary Figure S10).

We then sought to identify and experimentally validate
the gene targets of the PGC1	 transcriptional co-activator
inferred by RGBM in glioma harboring FGFR3-TACC3
gene fusions, which is a context of maximal activity for
this MR. Under this scenario, RGBM identified a regu-
lon of positively regulated targets of PGC1	 comprising
243 genes. To validate the predictions made by RGBM for
PGC1	 target genes, we ectopically expressed PPARGC1A
(the gene encoding for PGC1	) in immortalized human as-
trocytes and evaluated the changes of expression of the top
30 targets in the regulon predicted by RGBM by quanti-
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Figure 9. qRT-PCR from HA–vector or HA–PPARGC1A. Data are fold
changes relative to vector (dotted line) of one representative experiment
(data are mean±standard deviation, n = 3 technical replicates). P-values
were calculated using a two-tailed t-test with unequal variance. P-value: *
< 0.05; ** < 0.01; *** < 0.001.

tative RT–PCR (qRT–PCR). We validated primers for ef-
ficient PCR from the cDNA of 22 of the top 30 targets
and found that the expression of 17 of the 22 genes (77%)
was up-regulated by PGC1	, thus confirming that they are
bona-fide PGC1	 target genes (Figure 9, Supplementary Ta-
ble S5). This fraction of experimentally validated targets is
notably high when compared to similar validation studies of
gene network inference algorithms. For example in (70), the
authors performed RNAi–mediated gene knockdown ex-
periments in two colorectal cancer cell lines targeting eight
key genes in the RAS pathway and evaluate the percentages
of correctly identified targets from several gene network in-
ference algorithms. They report an accuracy of 46% for the
gene HRAS.

DISCUSSION AND CONCLUSIONS

In this paper, we proposed a novel GRN inference frame-
work, whose core model for deducing transcriptional reg-
ulations for each target gene can either be boosting of
regression stumps (GBM) or ensemble of decision trees
(RF). We showcased that the proposed GBM based RGBM
method provides efficient results with both the LS-Boost
and the LAD-Boost loss functions. Similarly, the proposed
RF based RGENIE method easily outperforms GENIE
on several in-silico and two real (E. coli and S. cerevisiae)
datasets. Our key contributions are:

• Sparsifying the GRN network inferred from tree-based
ML techniques (GBM/RF) using a Tikonov regular-
ization inspired optimal L-curve criterion on the edge-
weight distribution obtained from the RVI scores of a tar-
get gene to determine the optimal set of TFs associated
with it.

• Propose a simple heuristic based on the maximum vari-
able importance score for all the genes to detect nodes
with 0 in-degree or genes which are not regulated by other
genes i.e. are upstream regulators.

• Incorporation of prior knowledge in the form of a mech-
anistic active binding network.

• Show that RGBM beats several state-of-the-art GRN in-
ference methods like ARACNE, ENNET, GENIE w.r.t.

evaluation metrics AUpr and AUroc by 10–15% for various
DREAM challenge datasets.

• Show through synthetic RNA-Seq experiments that
random-forest based methods are inferior to gradient
boosting machines for inferring GRNs where very few
TFs (hubs) are regulating a majority of the target genes.

• Identification of the main regulators of the different
molecular subtypes of brain tumors i.e. master regula-
tors driving transformation of the G-CIMP-high into G-
CIMP-low and PA-like into LGm6-GBM subtypes of
glioma.

• Identification and validation of the main regulators of
the mechanism of action of FGFR3-TACC3 fusion in
glioblastomas.

AVAILABILITY

RGBM is available for download on CRAN at https://cran.
rproject.org/web/packages/RGBM.
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