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SUMMARY
Understanding the contribution of the host’s genetic background to cancer immunity may lead to improved
stratification for immunotherapy and to the identification of novel therapeutic targets. We investigated the ef-
fect of common and rare germline variants on 139 well-defined immune traits in �9000 cancer patients
enrolled in TCGA. High heritability was observed for estimates of NK cell and T cell subset infiltration and
for interferon signaling. Common variants of IFIH1, TMEM173 (STING1), and TMEM108 were associated
with differential interferon signaling and variants mapping to RBL1 correlated with T cell subset abundance.
Pathogenic or likely pathogenic variants inBRCA1 and in genes involved in telomere stabilization andWnt-b-
catenin also acted as immunemodulators. Our findings provide evidence for the impact of germline genetics
on the composition and functional orientation of the tumor immunemicroenvironment. The curated datasets,
variants, and genes identified provide a resource toward further understanding of tumor-immune inter-
actions.
INTRODUCTION

Immunotherapy with monoclonal antibodies that target immune

inhibitory signaling (immune checkpoints) (Ishida et al., 1992;

Leach et al., 1996) has emerged as the standard of care for
many solid tumors, with an objective response rate up to �40%

in some cancer types (e.g., melanoma) (Chamoto et al., 2020;

Sweis and Luke, 2017). However, overall, it has been estimated

that fewer than�15% of cancer patients might currently respond

to such treatments (Haslam and Prasad, 2019). The density,
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location, and functional orientation of tumor infiltrating leukocytes

have been associated with prognosis (Galon and Bruni, 2020),

evolution of metastases in space and time (Angelova et al.,

2018), and responsiveness to immunotherapy (Bruni et al.,

2020), especially to checkpoint inhibition (Cristescu et al., 2018;

Tumeh et al., 2014). Understanding the mechanisms underlying

anti-tumor immune response will help stratify patients and may

lead to the development of more effective therapies.

Cancer-cell intrinsic features such as somatic genetic alter-

ations that activate specific oncogenic pathways (Bedognetti

et al., 2016; Kalbasi and Ribas, 2020), the mutational load (Sam-

stein et al., 2019; Snyder et al., 2014), the presence and degree

of microsatellite instability (Mandal et al., 2019), and aneuploidy

(Davoli et al., 2017) can differentially influence cancer immune

responsiveness (Roelands et al., 2020; Rooney et al., 2015;

Thorsson et al., 2018). Modifiable host factors such as themicro-

biome may also modulate the immune microenvironment and

affect response to immunotherapy (Helmink et al., 2019; Iida

et al., 2013). But host genetic factors have not been explored

in depth as modulators of cancer immune responsiveness (Bed-

ognetti et al., 2019; Havel et al., 2019).

Genome-wide association studies (GWAS) have identified

germline variants that exert strong effects on circulating leuko-

cyte counts (Keller et al., 2014) and fractions (Orr�u et al., 2013),

severity of immune-mediated tissue rejection in transplantation

(Yang and Sarwal, 2017), and autoimmune diseases (Ye et al.,

2018). Candidate gene studies in patients on immunotherapy

have reported association between treatment responsiveness

and immune-related genes such as IRF5 (Uccellini et al., 2012)

and CCR5 (Bedognetti et al., 2013; Ugurel et al., 2008) in the

pre-checkpoint inhibition era; and CTLA4 (Queirolo et al.,

2017), HLA (Chowell et al., 2018), Fc-gamma receptor (Arce Var-

gas et al., 2018), IL2, and IL21 (Chat et al., 2019) in the context of

CTLA-4 or PD-1 blockade therapy.

The Cancer Genome Atlas (TCGA) project has increased our

understanding of cancer pathogenesis (Hutter and Zenklusen,

2018). A comprehensive analysis of immune signatures in TCGA

identified features of the immune response that predict survival

across many tumor types (Thorsson et al., 2018). Here, we used

TCGA to perform a pan-cancer evaluation of the contribution of

germline variation to anti-tumor immune response. First, we

calculated genome-wide heritability of immune traits from com-
368 Immunity 54, 367–386, February 9, 2021
mon variants. Next, we performed GWAS for heritable immune

traits to identify the loci with the strongest effects. Finally,

we examined the contribution of rare germline variants in

known cancer susceptibility genes to the cancer immune

microenvironment.

Our findings provide evidence for the impact of the host’s

genetic background on the composition and functional orienta-

tion of the tumor immune microenvironment. The curated data-

sets herein generated and the list of variants and genes are in-

tended to serve as a resource for future studies in the field of

cancer germline immunogenetics and immunotherapy. Results

are also presented through the CRI iAtlas portal for interactive

exploration and visualization (https://www.cri-iatlas.org).

RESULTS

Overview of the discovery approach and description of
the immune traits
To examine the contribution of germline genetic variation to the

functional orientation of the immune microenvironment, we con-

ducted heritability analysis, GWAS (N = 9,603), and rare variant

analysis (N = 9,138) across 30 non-hematological cancer types

characterized by the TCGA (Figure 1 top; Table S1). Unless

otherwise indicated, all analyses were adjusted for cancer

type, age at diagnosis, sex, and the first seven components

from principal component analysis (PCA) done on single nucleo-

tide polymorphism (SNP) data, which largely capture genetic

ancestry (see Methods). We considered 139 well-characterized

immune traits estimated in the TCGA immune analysis (Thorsson

et al., 2018) (Figure 1 bottom panel; Table S2). We divided the

traits into six categories based on the approach used to derive

them and the parameters they intend to measure: (1) leukocyte

subset enrichment score (ES), which estimates leukocyte subset

abundancewithin the tumor based on the coordinated regulation

of lineage-specific genes using single sample gene set enrich-

ment analysis (ssGSEA) (Bindea et al., 2013); (2) leukocyte sub-

set proportion (%), which estimates the leukocyte subset

proportion within infiltrating leukocytes using CIBERSORT

deconvolution (Gentles et al., 2015); (3) overall proportion, which

includes measures of leukocyte infiltration and stromal contents;

(4) adaptive receptor, quantifying T cell receptor (TCR) and B cell

receptor (BCR) diversity (TCR and BCR Shannon entropy and

https://www.cri-iatlas.org
mailto:rwsayaman@gmail.com
mailto:elad.ziv@ucsf.edu
mailto:dbedognetti@sidra.org
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Figure 1. Overview of the discovery approach
Flowchart showing analytic workflows, source of genetic germline data, quality control filtering, and immune traits used in the analysis.

See also Figure S1, Tables S1 and S2.
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Figure 2. Genome-wide heritability of immune traits
GCTAGREML estimates of the percentage of phenotypic variance explained by all common variants. Error bars represent the standard errors and all p values are

derived from likelihood ratio tests (LRT).

(legend continued on next page)
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richness); (5) expression signature, consisting of a collection of

annotated functional signatures summarizing different immune-

related biological processes (e.g., wound healing, interferon

(IFN) and tumor growth factor beta (TGF-b) signaling, antigen-

presentingmachinery etc.), and (6) attractor metagene, which in-

cludes co-expression signatures (metagene attractors) derived

from the whole TCGA dataset (Cheng et al., 2013a, 2013b). All

of the immune traits were derived fromRNA-seq, with the excep-

tion of overall proportion estimates (which include hematoxylin

and eosin [H&E] tissue imaging and DNAmethylation array data).

The 139 traitswere clustered based on their Pearson correlation

coefficients, and six groups of correlated traits were defined and

referred to here as ‘‘modules’’ (Figure S1 and Table S2). The first

five modules recapitulate the immune modules defined in Thors-

son et al. (Thorsson et al., 2018) with highly concordant module

membership. The largest group included traits that were highly

correlated with leukocyte fraction and lymphocyte infiltration esti-

mates (lymphocyte infiltrationmodule). Traits capturing monocyte

function and macrophages infiltration, and MHC-related traits

formed a secondmodule (monocyte/macrophagemodule). Traits

capturing IFN signaling were highly correlated and formed a third

module (IFN response module). The next two modules included

traits associated with TGF-b signaling (TGF-b response module)

and wound healing (wound healing module), respectively. The

last and previously undescribed module mostly included leuko-

cyte subset ES that were excluded from the clustering analysis

in Thorsson et al., such as T helper, CD8 cytotoxic, and natural

killer (NK) cells (T cell/cytotoxic module) (Thorsson et al., 2018).

Although most traits fit within these modules, a subset (N = 42)

did not cluster within any module. In addition, there was substan-

tial correlation between traits across modules, particularly be-

tween the lymphocyte infiltration and monocyte/macrophage

modules, and between these and the IFN response modules. A

subset of traits clustering within the T cell/cytotoxic module

were significantly correlated with the IFN response, lymphocyte

infiltration, and monocyte/macrophage modules.

GWAS were performed on traits that we found to have signif-

icant heritability since these would be most likely driven by com-

mon genetic variants. For rare variant association tests, we

examined all 139 traits, and focused on well-annotated patho-

genic or likely pathogenic variants within high penetrance cancer

susceptibility genes (Huang et al., 2018).

Genome-wide heritability of immune traits
We performed heritability analysis on 139 traits using a mixed-

model approach implemented ingenome-wide complex trait anal-

ysis (GCTA) genomic-relatedness-based restricted maximum-
(A) Twenty-eight of 139 immune traits analyzed in the European ancestry grou

(V(Genotype)/Vp) (LRT p < 0.05), 10 traits (FDR p < 0.05) and 15 traits (FDR p < 0.1

(B) Percentage of variance of immune traits accounted for by the interaction betw

the subset of individuals with immune subtype information (n = 6,586), 44 immune

and 26 traits showed significant heritability of interaction effects (FDR p < 0.05). H

59 immune traits identified. Immune trait categories and corresponding immune

(C) Immune subtype-specific heritability analysis conducted for immune traits with

of the six immune subtype groups with sufficient cohort size: C1 (N = 1,752), C2 (N

covariate. Stratified analysis of the 44 traits with at least nominally significant G x

heritability in at least one of the immune subtypes or with immune subtype as a

described in Methods.

See also Figure S2 and Table S3.
likelihood (GREML) method (Yang et al., 2010, 2011) to calculate

the proportion of immune trait variation that is attributable to

common genetic variants (Zaitlen and Kraft, 2012). Heritability an-

alyses were conducted separately within each ancestry subgroup

(NEuropean = 7,813, NAfrican = 863, NAsian = 570, and NAmerican = 209

individuals), which were derived from ancestry analysis (Carrot-

Zhang et al., 2020) (Figures S2A and S2B).

In the pan-cancer analysis, we found 10 immune traits with

significant heritability after correction for multiple hypothesis

testing (false discovery rate (FDR) p < 0.05) and 23 other traits

with nominally significant heritability (p < 0.05) in at least one

ancestry group (Figure 2A; Figure S2C and Table S3). Within

the European ancestry group, 28 traits had at least nominally sig-

nificant heritability. The most heritable traits, with �15%–20%

heritability and FDR p < 0.05, were members of the T cell/cyto-

toxicmodule (Figure S1A) and represent T cell subsets estimated

using ES including CD8 T cells, T helper cells, T follicular helper

(Tfh) cells, T effector memory (Tem) cells, T central memory

(Tcm) cells, NK cells, and eosinophils (Figure 2A). An Antigen

Presenting Machinery signature (APM1) clustered within the

T cell/cytotoxic module (Figure S1A) and was also �20% herita-

ble (FDR p < 0.05). T helper 1 (Th1) cell ES, which was also part of

this module (Figure S1), showed lower but nominally significant

heritability (Figure 2A). The second most heritable traits, with

�15% heritability, included highly correlated IFN-related signa-

tures (Interferon Cluster 21214954, GP11 Immune IFN, Interferon

19272155, IFN 21978456, Module3 IFN score, and IFIT3), and

activated dendritic cells (aDC) ES, which cluster within the IFN

response module (Figure S1A). Among these, Interferon Cluster

21214954 and aDC ES were significant after correction for mul-

tiple hypothesis testing (FDR p < 0.05). In addition, we detected

nominally significant heritability for T helper 2 (Th2) and T helper

17 (Th17) cell ES, and proportions of T cells CD8+, memory B

cells, and eosinophils within leukocytes (Leukocyte Subset %).

The CD8+ T cell/CD68+ ratio, a B cell metagene score (B cell

mg IGJ), macrophage ES, neutrophil ES, and other signatures

belonging to the macrophage/monocyte module, including ma-

jor histocompatibility complex class-II (MHC2 21978456) and si-

glec-regulation (G SIGLEC9), an attractor metagene, showed

nominally significant heritability.

Despite the limited cohort size, specific immune traits were

also heritable in the African and Asian ancestry groups at a nom-

inal significance (Figure S2C). In the African ancestry group, NK

CD56dim and cytotoxic cell ES, single gene immune therapy

target PDCD1 expression (PD1 data), and TGF-b immunomodu-

latory signaling (TGFB PCA 17349583), showed nominally signif-

icant heritability. In the Asian ancestry group, Tcm cell ES and
p (N = 7,813) showed nominally significant level of genome-wide heritability

) showed significant heritability after correction for multiple hypothesis testing.

een germline genotypes and immune subtypes (V(GxImmune Subtype)/Vp). In

traits showed nominally significant heritability of interaction effects (p < 0.05),

eritability estimates with standard errors are shown in (A) and (B) for each of the

trait modules are annotated.

significant G x Immune Subtype interaction. Heritability was calculated in three

= 1,813), and C3 (N = 1,737), as well as with immune subtype as an additional

Immune Subtype interaction effects showed 16 traits with significant V(G)/Vp

covariate (FDR p < 0.1). GREML analyses were performed with covariates as

Immunity 54, 367–386, February 9, 2021 371
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Immune Trait Category Immune Trait Module
Lymphocyte Infiltration
Macrophage/Monocyte
IFN Response

TGF-β Response
T Cell/Cytotoxic
Unassigned

Leukocyte Subset ES
Leukocyte Subset (%)

Expression Signature
Attractor Metagene

A

B

Figure 3. Genome-wide associations for variants affecting immune traits

GWAS performed on the 33 immune traits with genome-wide heritability in the ancestry clusters identify 23 loci with 598 genome-wide significant associations

between single SNPs and immune disposition in 10 immune traits (p < 5x10�8), and an additional 1,196 suggestive associations in 33 traits (p < 1x10�6).

(A) Combined Manhattan plot representing -log10 p of the significant and suggestive GWAS hits by chromosomal position across the 33 immune traits en-

compassing four phenotypic categories.

(legend continued on next page)
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the proportion of NK cells activated (%) showed nominally signif-

icant heritability.

Variation of heritability of immune traits across immune
subtypes
Since there was considerable heterogeneity between tumor

types, we investigated whether heritability varies among previ-

ously defined tumor immune subtypes (Thorsson et al., 2018).

These six distinct immune subtypes include: wound healing

(C1), IFN-g dominant (C2), inflammatory (C3), lymphocyte

depleted (C4), immunologically quiet (C5), and TGF-b dominant

(C6) (Figure S1B). These immune subtypes formed larger subsets

than any of the individual tumor types, facilitating heritability ana-

lyses that require large numbers (Visscher et al., 2014). We per-

formed statistical interaction analysis using GREML in the Euro-

pean ancestry group (Figure 2B). We found 26 immune traits

with significant variance of genotype-immune subtype interaction

effects at FDR p < 0.05 and 18 other nominally significant traits

(p < 0.05). These interactions suggest that the contribution of ge-

notype to immune traits differs among immune subtypes. We

found substantial overlap between immune traits with nominally

significant heritability and those with interaction effects. Eight of

the heritable traits from the T cell/cytotoxicmodule had significant

interactions with immune subtype including: ES of CD8 T cells,

T helper cells, Tfh cells, Tem cells, Tcm cells, NK cells, eosino-

phils, and APM1 expression signature. In addition, ES of NK

CD56 bright cells, B cells, andmast cells showed significant inter-

action effects of genotype-immune subtype. The majority of

immune traits with significant and nominally significant geno-

type-immune subtype interaction belonged to the T cell/cyto-

toxic, macrophage/monocyte, overall lymphocyte infiltration,

and TGF-b response modules. On the other hand, traits that

were part of the IFN response module showed no genotype-im-

mune subtype interaction, suggesting that the genotypic contri-

bution to these traits was independent of immune subtypes.

To understand how immune subtype influences heritability of

the 44 immune traits with at least nominally significant geno-

type-immune subtype interaction effects, we performed herita-

bility analyses stratified by immune subtype. We performed

these only in subtypes with sufficient sample size: C1 (NC1 =

1,752), C2 (NC2 = 1813), and C3 (NC3 = 1737). We found signifi-

cant heritability estimates (FDR from p < 0.1 to p < 0.001 signif-

icance levels) largely within the C1 immune subtype, but not

within themore immune-active subtypes, C2 and C3 (Figure 2C).

Genome-wide association for variants affecting immune
traits
We selected the 33 immune traits with nominally significant her-

itability (p < 0.05) in at least one ancestry group to perform

GWAS, and tested the association between each of these traits

and 10,955,441 variants that passed the quality and frequency

thresholds. We identified 598 genome-wide significant (p <
(B) Heatmap demonstrating pleiotropy of the top associations across 33 immun

significant and suggestive SNPs across each of the 33 immune traits. Immune tr

immune trait categories and modules are annotated. The SNPs at the HLA loci

covariates as described in Methods. The T cell/cytotoxic-dominant cluster and an

cluster and example loci on chr 2 and chr 3 are indicated by dotted lines in purp

See also Figures S3, S4, and Table S4.
5x10�8) associations at 23 loci for 10 immune traits. We also

identified an additional 1,196 suggestive (p < 1x10�6) associa-

tions for 33 traits (Figure 3A; Table S4). Summary statistics for

all GWAS analyses are available on Figshare (https://doi.org/

10.6084/m9.figshare.13077920).

Two of the 23 loci with the strongest associations (p < 1x10�10

to p < 1x10�25) included SNPs that map within ± 50 KB (or 1 MB

in the case of HLA) of the genes that comprise the signature

of the associated immune trait. These included SNPs at the

HLA locus, which are associated with the MHC2 expression

signature, and SNPs at the IL17RA locus, which makes up the

Th17 cell ES. We concluded that these SNP associations repre-

sented simple expression quantitative trait loci (eQTLs), and we

did not consider them further.

In contrast, the remaining 21 loci were not proximal to genes

comprising the associated signatures; therefore, they likely

represent SNPs affecting the overall immune trait. The majority

of these 21 loci are associated with leukocyte subset enrichment

and IFN signaling. At these 21 loci, we found 59 genome-wide

significant associations with 17 traits, 45 of which were repre-

sented by unique SNPs, and 10 of which had significant associ-

ation with at least two traits. Excluding the HLA and IL17RA loci,

we identified 841 suggestive associations, represented by 667

unique SNPs, 70 of which had multiple suggestive hits in at least

two traits, suggesting pleiotropic associations of significant

SNPs (Table S4).

To examine pleiotropy, we clustered all 33 immune traits (Fig-

ure S3A) based on the association p values of all significant and

suggestive SNPs found to be associated with at least one trait

(Figure S3B). The results generally recapitulated clustering

based on the correlation of their phenotypic values, with traits

with common associations tending to have similar overall

expression. (Figures S3A and S3B). To understand pleiotropic

effects at individual loci, we visualized the strength of each asso-

ciation between each immune trait and each significant and sug-

gestive SNPs across the genome (Figure 3B). SNPs that were

associated with one of the T cell ES tended to be associated

with multiple other T cell subsets. For example, significant and

suggestive SNPs in chromosome (chr) 17 associated with

CD8 T and T helper cell ES that were part of the T cell/cyto-

toxic-dominant cluster (Figure 3B, top cluster highlighted in

red) showed nominally significant associations (1x10�6< p <

1x10�4) across a number of other traits within this cluster, and

largely no associations across other traits. Similarly, SNPs asso-

ciated with one of the traits from the IFN response module were

usually associated with the other traits within the IFN-dominant

cluster, but largely distinct from traits from other clusters. For

example, SNPs at chr 2 were associated with traits in the IFN-

dominant cluster, but not other traits (Figure 3B, second cluster

highlighted in purple). However, a few of the top loci were asso-

ciated with traits from both the IFN and T cell/cytotoxic dominant

clusters. For example, significant SNPs in chr 3 associated with
e traits. The heatmap is facetted by chr and shows the GWAS -log10 p of the

aits are clustered based on the Pearson correlation of the GWAS -log10 p, and

are shown condensed. GWAS were performed by regression analyses using

example locus on chr 17 are indicated by dotted lines in red; the IFN-dominant

le.
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Figure 4. Genetic variants and candidate genes associated with differential IFN signaling

GWAS identified 17 associations between seven SNPs and five IFN signatures reaching genome-wide significance (p < 5x10�8), and additional 152 suggestive

associations between 29 SNPs and 6 IFN expression signatures (p < 1x10�6).

(legend continued on next page)
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IFN immune traits also showed nominally significant associa-

tions with eosinophil, Th1 cell, and cytotoxic T cell ES within

the T cell/cytotoxic module. Finally, the loci for MHC2 (driven

by HLA expression) on chr 6 and Th17 ES (driven by IL17RA

expression) on chr 22 showed largely no association outside of

their respective associated traits, consistent with being sim-

ple eQTLs.

To understand if significant and suggestive SNPs are associ-

ated with specific epigenetic regulatory regions, we mapped

the SNPs to annotated chromatin states using an expanded

model of 18 chromatin states (Roadmap Epigenomics Con-

sortium et al., 2015), which takes into account six chromatin

marks across 98 epigenomes, including 25 that are specifically

immune related (Figure S4A and Table S4). Excluding the HLA

and IL17RA loci, we found a substantial fraction of the

genome-wide significant loci to have at least one SNP that

maps to a potential regulatory site across multiple epigenomes

including: weak transcription chromatin active states, weak

enhancer active states, zinc finger (ZNF) genes/repeats active

and heterochromatin inactive states, and weak repressed poly-

comb states (Figure S4B). These findings suggest that many of

the loci we identified may act directly on gene transcription or

through alteration of gene regulatory regions, including at distant

enhancer regions, across multiple epigenomes including im-

mune-related ones.

Genetic variants and candidate genes associated with
IFN signaling
We found two loci associated with IFN signaling traits (IFN

response module), one on chr 2 and another on chr 3, and a third

locus very close to the genome-wide significant cut-off on chr 5

(Figure 4A; Table S4). These loci map to IFIH1, TMEM108, and

TMEM173, respectively (Figures 4C, 4E, and 4G). The direction

of the effect of these SNPs on the IFN traits was consistent

across the majority of cancer types (Figures S5A–S5C).

Locus 2 (chr 2) is represented by SNPs rs2111485 and

rs1990760, which were both significantly associated with three

of the IFN traits and had suggestive associations with two other

IFN traits (Table S4). These two SNPs are in high linkage disequi-

librium (LD) with each other (r2 > 0.8) (Figure 4C) and map to the

IFIH1 gene, which is induced by IFN and acts as an RNA-depen-

dent ATPase (Kang et al., 2002; Yoneyama et al., 2005).
(A) Manhattan plot (left) of GWAS -log10 p for a representative IFN signature, IFN 2

shows deviation of the observed p values from the expected distribution from a the

dotted line represents the threshold of genome-wide significance (p < 5x10�8).

(B) Protein-protein interaction network (String-db minimum interaction score confi

the 6 IFN-related signatures, and IFIH1, TMEM108 and TMEM173. (C) LocusZoom

and two suggestive SNPs on chr 2 to the IFIH1-GCA-KCNH7 locus, with the two

plots show linkage disequilibrium estimates (r2 color map) and recombination ra

(D) Three of the SNPs in the IFIH1-GCA-KCNH7 locus were mapped to 13 traits

GWAS Catalog (Buniello et al., 2019).

(E) LocusZoom plot maps the genomic location of significant and suggestive SNP

annotated.

(F) Boxplots of TMEM108 gene expression according to rs35356925 genotype in

retrieved from DICE and were derived from regression models and permutations

(G) LocusZoomplot maps the genomic location of the two suggestive SNPs on chr

(H) Overlay of the crystal structure of the R232 monomer (dark blue and red) with o

allele (red) interacts muchmore directly with the cGAMP ligand (green) than the H2

make the ligand more visible.

See also Figure S5, Tables S4, and S5.
Rs2111485 and rs1990760 have been reported to be associated

with a number of autoimmune diseases such as psoriasis, viti-

ligo, systemic lupus erythematosus, ulcerative colitis, Crohn’s

disease, and type I diabetes mellitus (T1DM) in the GWAS cata-

log (Figure 4D) (Buniello et al., 2019). Rs1990760 results in an

amino-acid change (A946T). The 946T allele, which was associ-

ated with higher risk of T1DM and vitiligo but decreased risk of

inflammatory bowel disease and psoriasis was associated with

higher IFN trait values in our analyses. This allele has been asso-

ciatedwith higher basal and inducible production of type I IFNs in

human peripheral blood mononuclear cells and enhanced anti-

viral response in transgenic mice (Gorman et al., 2017; Rice

et al., 2014). Our analyses identified at least one additional sug-

gestive (p < 10�6) association at this locus characterized by

rs17716942, a SNP which is not in LD with the lead SNPs (r2 <

0.1) and has been associated with psoriasis (Tsoi et al., 2012).

Locus 4 (chr 3) included six genome-wide significant SNPs

associated with four of the six IFN signaling traits (Figure 4A; Fig-

ure S5D and Table S4). These SNPs were nominally associated

with several other cellular signatures including one for aDC and

one for the fraction of NK cells (Figure 3A). These SNPs map to

the TMEM108 gene, which overlaps with TMEM108-AS1 Anti-

sense RNA1 gene, and are in high LD with each other (r2 > 0.8)

(Figure 4E). EQTL and splice quantitative trait loci (sQTL) analysis

followed by colocalization with eCAVIAR demonstrate that

TMEM108, CDV3, and RP11-91K8.5 all plausibly colocalize in

the Genotype-Tissue Expression (GTEx) data with traits of the

IFN response module (Table S5). In the expanded region ana-

lyses (within ± 1MB for eQTL and ± 500 KB for the sQTL, see

Methods) we did not find counter-evidence for colocalization

for any of these genes (i.e., no SNPs with higher eQTL or sQTL

and lower GWAS signal; expanded region plots are available at

https:/figshare.com see Methods). Therefore, we considered

the evidence of colocalization as strong. Of these three genes,

we found that TMEM108 (colocalization shown in Figure S5D

and S5E) is also significantly associated with the top SNPs in

the Dataset of Immune Cell Expression (DICE) (Schmiedel

et al., 2018), particularly CD8 T cell and regulatory T cell (Treg

cell) subsets (Figure 4F), suggesting it is the most likely causal

gene at this locus. The alleles associated with increased expres-

sion of IFN response module traits in tumors are associated with

decreased TMEM108 expression (Table S5), implying that it may
1978456, shows three main peaks on chr 2, 3, and 5. The related QQ plot (right)

oretical c2 distribution. Genomic inflation factor, lambda, is calculated. The red

denceR 0.7, PPI enrichment p < 1.0x10�16) between the 69 genes comprising

plot of the association results maps the genomic location of the two significant

most significant SNPs (rs2111485 and rs1990760) annotated. All LocusZoom

tes (blue line) around the genome-wide significant loci.

which are predominantly autoimmune-related in 26 independent studies in the

s on chr 3 to the TMEM108 locus, with the most significant SNP (rs35356925)

two T cell subsets, retrieved from DICE (Schmiedel et al., 2018);p values were

.

5 to the TMEM173 locus, with themost significant SNP (rs1131769) annotated.

ne of the chains of the rs1131769 H232 monomer (cyan and yellow). The R232

32 allele (yellow). In the zoom-in panel, part of the protein is removed in order to
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Figure 5. Genetic variants and candidate genes associated with T cell subset ES

Clustering of GWAS -log10 p identified highly correlated associations of SNPs across 13 immune traits predominantly associatedwith T cell subset ES in the T cell/

cytotoxic module (inset).

(legend continued on next page)
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negatively regulate IFN signaling. No other GWAS significant

SNPs were associated with eQTL in DICE.

We also identified a third locus including a SNP with nearly

genome-wide significance (p = 8.27x10�8) on chr 5 (Figure 4G).

This SNP (rs1131769) is a missense variant in TMEM173,

causing an Arginine to Histidine substitution at position 232 of

the STING protein, a major mediator of the innate response

against virus and cancer cells (Flood et al., 2019; Patel and Jin,

2019). The minor allele T (H232) was associated with lower IFN

signaling values, as compared to the major allele C (R232) (Table

S4). The H232 allele results in reduced IFN-a (Kennedy et al.,

2020) and IFN-b (Zhang et al., 2013) production following stimuli.

The causal association between this variant and impaired IFN

response has been corroborated by molecular simulations, sug-

gesting that the ligand-binding loops were more rigid for R232

compared to H232 (Kennedy et al., 2020). We performed an in-

silico evaluation of the effect of this amino acid substitution on

the protein by superimposing H232 and R232 STING structures

and found that H232 interacts less closely with its ligand cGAMP

(Figure 4H), in agreement with its lower activity.

Based on known protein-protein interactions (PPI), as anno-

tated in String database (minimum interaction score confidence

R 0.7), we found that IFIH1 and TMEM173 formed a highly con-

nected PPI network with the majority of genes that define the

traits in the IFN response module (Figure 4B). In contrast,

TMEM108 showed no direct PPI with the IFN-associated genes,

suggesting an indirect immune modulatory mechanism.

Genetic variants and candidate genes associated with
differential immune infiltration
Fourteen of the genome-wide significant loci were associated

with eight distinct traits derived from ES that cluster within the

T cell/cytotoxic module (Figure 3B, red dotted boxes, and Fig-

ure 5A inset). We show each of the genome-wide significant

and suggestive SNPs mapping to these 14 loci in a combined

Manhattan plot (Figure 5A; Table S4).

Comprehensive eQTL and sQTL analyses and colocalization

revealed several candidate causal genes at these loci (Figure 5B).

The strongest evidence for colocalization was with locus 21 (chr

20), which was associated with Tcm cell ES and splicing of RBL1

(eCaviar colocalization posterior probability (CLPP) = 0.95) (Fig-

ure 5B; Figures S6A, S6B, and Table S5). The top SNP at this

locus (rs140752248) mapped to the region 50 of RBL1 and two

additional SNPs in moderate LD with the top SNP mapped to in-
(A) CombinedManhattan plot showing 14 distinct loci and 26 genome-wide signifi

the T cell subset-dominant cluster: T helper, CD8 T, Tfh, Tcm, cytotoxic, NK ce

multiple significant or suggestive (p < 1x10�6) hits, and 10 have hits in the same

(B) Colocalization analysis in GTEx and TCGA for the SNPs associated with T cel

either assuming one causal SNP, two causal SNPs, or the regional CLPP in GT

represented. For each sQTL, the SNP-splicing event pair with the highest CLPP i

represented. Plot of the eQTL and sQTL -log10 p (right). For each SNP-gene expres

SNP were included in the analysis. Evidence for the expanded range analysis (± 1

Pseudogenes are not shown.

(C) LocusZoom plot of the association results for Tcm cell ES maps the genomi

RPN2 locus.

(D) 3-level plot displaying colocalization of rs140752248withRBL1 splicing in TCG

for RBL1 splicing in TCGA, and the CLPP assuming one causal SNP; the index SN

represented.

See also Figure S6, Tables S4, and S5.
trons of RBL1 (Figure 5C). This sQTL also displayed consistent

evidence for expanded region colocalization as there was no ev-

idence for a secondary signal for splicing separate from the

signal from the association with Tcm cell ES in the expanded

range analyses (Figure 5D; Table S5). The association of this

locus with Tcm cell ES was fairly consistent across cancer sub-

sets (Figure S6B). RBL1 has homology with the tumor suppres-

sor RB (Ng et al., 2020), which is also involved in immune regu-

latory functions (Garfin et al., 2013; Jerby-Arnon et al., 2018).

We also found weaker evidence for colocalization at this locus

with sQTLs for RPN2 and SRC, but both of these results also

had stronger secondary associations with the splicing event,

with RPN2 having intermediate evidence and SRC having nega-

tive evidence in the expanded region colocalization. We found

strong evidence for colocalization of a SNP on chr 8 (locus 12,

rs71510648) associated with Tfh cell ES and with an sQTL of

INTS10 in GTEx and in TCGA (Figure 5B; Figures S6C–S6F

and Table S5). Examining the expanded region evidence for co-

localization, we found strong evidence in GTEx and intermediate

evidence in TCGA (Figure 5B). INTS10 has been identified in a

GWAS of persistent hepatitis B infection and was found to

mediate its effect via IRF3, an IFN regulatory transcription factor

(Li et al., 2016).

At locus 19 on chr 17, we identified multiple genome-wide

significant and suggestive associations with three immune traits

associated with T cell subsets: rs112236917, rs112262673,

rs73316909, and rs138156694 were significantly associated

with T helper cell ES; rs112236917, rs73316909, and

rs138156694 had significant associations with CD8 T cell ES;

and rs112236917, rs73316909, and rs138156694 had sugges-

tive associations with Tfh cell ES (Figure 5A;Table S4). Colocal-

ization of eQTL and sQTL data in GTEx identified an eQTL of

P2RX1 and sQTLs of P2RX5 and RP11-235E17.6 as potential

candidates (Figure 5B; Table S5). Of these, P2RX1 and P2RX5,

purigenic receptors which function as ATP-gated ion channels,

are known to have an effect on multiple cells in the immune sys-

tem, including lymphocytes (Junger, 2011). Colocalization in

TCGA data identified ATP2A3, C17orf85, ITGAE, and ZZEF1 as

additional candidate genes (Figure 5B; Table S5). Of these,

ITGAE (also known as CD103) is known to have a function in

T cell homing to epithelial tissue and tumors (Kim et al., 2019).

However, only rs112262673-ZZEF1 splicing met our criteria for

evidence of colocalization in the expanded range analyses (see

Methods; Table S5). ZZEF1 (ZNF ZZ-Type And EF-Hand Domain
cant associations (p < 5x10�8) between 22 SNPs and eight immune traits within

lls, and eosinophil ES and APM1 expression signature. Of these, 13 loci have

region in more than one immune trait.

l subset-dominant cluster (max CLPP > 0.01). Plot of the maximum CLPP (left)

Ex and TCGA. For each eQTL, the gene-SNP pair with the highest CLPP is

s represented. For GTEx, results from the tissue with the highest max CLPP is

sion or SNP-gene splicing event pair, 200 SNPs (± 100 SNPs) around the index

MB for eQTL and ± 500KB for sQTL) is labeled as intermediate (*) or strong (**).

c location of a significant SNP (rs140752248) on chr 20 to the MROH8-RBL1-

A. The plot shows theGWAS -log10 p for Tcm cell ES in TCGA, the sQTL -log10 p

P rs140752248 and the nearest 100 upstream and 100 downstream SNPs are
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Figure 6. Cancer predisposition variants modulating immune traits

(A) Suggestive associations (p % 0.005 and FDR p < 0.25) between germline pathogenic or likely pathogenic cancer predisposition variants (rare variants) ex-

tracted fromwhole-exome data (Huang et al., 2018), grouped by curated mutually exclusive functional categories (left nodes), and immune traits (right nodes), as

(legend continued on next page)
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Containing 1) is involved in calcium ion binding and SNPs at the

ZZEF1 locus have been associatedwith adiposity and type 2 dia-

betes mellitus (Mahajan et al., 2018). However, these SNPs,

most of which are in LD with each other, are not in LD with

rs112262673 (r2 < 0.05). At locus 23 on chr 22, we identified three

SNPs with genome-wide significant associations including two

SNPs, rs73889576 and rs11914148, associated with Tcm cell

ES (Figure 5A; Table S4). A third SNP, rs572393792, with a sug-

gestive association with Tcm cell ES, had a genome-wide signif-

icant association with CD8 T cell ES and suggestive association

with T helper cell ES. EQTL and sQTL analyses coupled with co-

localization in TCGA identified ARHGAP8, FBLN1, NUP50,

PARVG, and PRR5 as possible candidates (Figure 5B; Table

S5). Among them, only NUP50 (associated with CD8 T cell ES),

a component of the nuclear pore complex interacting with cell

cycle regulatory proteins (Ogawa et al., 2010), was supported

by intermediate evidence in the expanded range colocalization

analyses.

In addition, we found potential evidence for colocalization with

several other genes at CLPP > 0.01 (Figure 5B; Table S5). These

included some genes with known functional effect on the im-

mune system and/or tumor microenvironment such as ID01

(Munn and Mellor, 2016) on chr 8 (rs16889186, CLPP = 0.036),

associated with cytotoxic cell ES. However, these results should

be interpreted with caution, since the effect on gene expression

was also modest (Figure 5B). The full list of eQTL and sQTL with

FDR p < 0.1 for all suggestive and significant SNPs either in

TCGA or GTEx, the results of the eCaviar colocalization analysis

for all of them, and the results of the expanded range analyses for

all the significant SNPs with CLPP > 0.01 are reported in Ta-

ble S5.

Associations with cancer predisposition variants
We performed association analyses between germline patho-

genic and likely pathogenic cancer predisposition variants

(referred to here as rare variants) (Huang et al., 2018) in high

penetrance susceptibility genes, and immune traits and immune

subtypes (Figure 6). Since mutations in most of the genes were

rare, when possible, we collapsed genes into categories sum-

marizing different biological processes or functions (Figure S7A).

However, as mutations within the homologous recombination

repair (HR) genes BRCA1 and BRCA2 were more common (82

and 79 events, respectively), we analyzed these genes sepa-

rately. Overall, 21 genotypic variables were used (Figures S7A

and S7B).

In an analysis across all cancer types, we found significant as-

sociations (FDR p < 0.1) between at least one immune trait and

germline mutations in BRCA1 and genes in Wnt-b-catenin and

telomere-stabilization pathways. We found suggestive associa-

tions (p < 0.005, FDR p from 0.1 to 0.25) between at least one im-

mune trait and seven other categories: cell cycle, collagen, tran-
identified in pan-cancer regression models adjusted for standard covariates. Sign

The adjusted p for the non-silent mutation rate is also shown. Beta coefficients a

Beta coefficient is shown irrespectively of the significance and number of events

(B) Values of representative immune traits (mean centered by cancer type, (MC)

across samples with mutations in genes related to the defined functional categ

Methods. See Methods for cancer type abbreviations.

See also Figure S7 and Table S6.
scription factor, mismatch repair (MMR), protein homeostasis

ubiquitination, metabolism, and MAPK signaling (Figures 6A

and 6B). These associations were only minimally altered by

correction for the somatic mutational load (Figure 6A). Mutations

in genes involved in telomere stabilization were correlated with

features associated with T cell exclusion, including low abun-

dance of T cell and cytotoxic cells and diminished IFN-related

signatures (including STAT1), and TCR diversity (TCR richness)

(Figure 6B). Germline mutations of a collagen-related gene

(COL7A1) had nominally significant associations with increased

macrophage infiltration and decreased lymphocyte infiltration

(Figure 6B). Lastly, we found the Wnt-b-catenin germline muta-

tions to be consistent with the presence of an inflammatory

phenotype accompanied by counter-regulatory mechanisms

such as the activation of the PD-L1 signaling and the recruitment

of Treg cells (Figure 6B).

We also tested the relation between rare variants and somatic

DNAalterations (FiguresS7C,S7DandTableS6).However, since

germline mutations in MMR genes are known to affect the so-

matic mutation rate, which predicts immunotherapy responsive-

ness, we performed more detailed analyses of these mutations.

As expected, MMR germline variants were associated with a

higher mutational/neoantigen load and a higher microsatellite

instability score (MANTIS) (Figure S7C) (Middha et al., 2017).

These associations were significant in colon adenocarcinoma

(COAD) and uterine corpus endometrial carcinoma (UCEC).

MMR germline mutations were associated with higher leukocyte

infiltration only in colon cancer (Figure 7A; Table S6). Overall, a

higher leukocyte fraction and non-silent mutation rate in MMR

germline mutated samples were confined to tumors with micro-

satellite instability (MSI-H) (Figure 7B). Interestingly, among

MSI-H tumors, the ones driven by MMR germline mutations

tended to have a higher leukocyte infiltration, although this com-

parison was not significant (p > 0.05) (Figure 7B). A similar trend

was observed for other immune signatures (data not shown).

Germline mutations in Fanconi Anemia (FA) and in BRCA1/2

genes were associated with a higher HR defect score (Fig-

ure S7C). However, only mutations in BRCA1 were associated

with favorable immunologic parameters such as higher values

ofMHCand IFN responsemodule traits including IFN-related sig-

natures and aDC ES. These associations were driven by breast

invasive carcinoma (BRCA) samples (Figures 6A and 7A). When

the analysis in BRCA samples was adjusted or stratified for

intrinsic molecular subtypes (basal-like versus non-basal-like tu-

mors), these associations were no longer significant (Table S6).
Discussion
We conducted a comprehensive pan-cancer analysis of the

germline genetic contribution to the tumor immune microenvi-

ronment by evaluating common variant heritability, performing
ificant associations (p < 0.005 and FDR p < 0.1) are highlighted with blue dots.

nd significance level are visualized pan-cancer and per cancer (right side). The

.

, to visually reflect the cancer-type covariate used in the model) are displayed

ories. Regression analyses were performed with covariates as described in
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Figure 7. Representative immune traits modulated by cancer predisposition variants in specific cancers

(A) Representative associations between pathogenic or likely pathogenic variants, grouped by functional categories, and representative immune traits within

COAD and BRCA.

(legend continued on next page)
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GWAS paired with colocalization analyses, and assessing the ef-

fect of rare variants in cancer predisposition genes.

Heritability analyses revealed that common genetic variants

explain up to one fifth of the variance of some immune traits.

About 25% of the traits (33 of 139) were heritable. The traits

most strongly influenced by germline genetics include estimates

of the abundance of cytotoxic T, NK, Tfh cells (heritability

�20%), and IFN signaling (heritability �15%), which have been

associated with favorable prognosis and/or responsiveness to

immunotherapy (Galon and Bruni, 2020). The magnitude of the

heritabilities that we identified were similar to the ones observed

for complex traits in humans, such as bodymass index (Shi et al.,

2016). The leukocyte subset ES were highly correlated (all part of

the T cell/cytotoxic module) and had largely overlapping GWAS

loci. However, ES for each of these cell types were calculated

based on distinct gene sets suggesting that the genetic correla-

tions between these traits were unlikely due to traditional eQTLs

but rather represented similar genetic mechanisms affecting the

cellular infiltrates and/or the activation states of these cells that

likely reflect an overall coordination of the immune response.

The heritabilities were partially dependent on immune subtypes

that characterize the overall patterns of immune response seen

in cancer (Thorsson et al., 2018). For instance, in the immune

traits that showed interactions with immune subtypes, the herita-

bilities were higher in the wound healing subtype, suggesting

that the effect of common genetic variants might be most pro-

nounced in highly proliferative and poorly immune infiltrated

tumors.

In GWAS analyses, we found two significant loci for IFN-

gamma signatures. One locus at chr 2 included SNPs within the

IFIH1 gene, previously associated with multiple autoimmune dis-

orders (Buniello et al., 2019; Rice et al., 2014), demonstrating a

link between autoimmunity and the immune response to cancer.

Since IFN signatures have been associated with responsiveness

to immunotherapy (Ayers et al., 2017; Cristescu et al., 2018),

theseSNPsmay also be associatedwith efficacy amongpatients

receiving immunotherapy, which is consistent with preliminary

data in melanoma patients receiving checkpoint inhibitors (Chat

et al., 2019). Our analyses also identified an IFN-associated clus-

ter of SNPs on chr 3 near TMEM108. TMEM108 is not known to

have an effect on IFN signaling but may signal through the Wnt-

b-catenin pathway (Yu et al., 2019). Our eQTL and sQTL analyses

foundcolocalizationwith TMEM108 inGTEx, andDICE, but not in

TCGA, suggesting that themechanismof action is via expression

on either the immune infiltrating cells and/or normal tissue sur-

rounding the tumor. In addition, we observed a near genome-

wide significant association between IFN signaling and a

well-characterized, functional missense variant of TMEM173

(rs1131769), which encodes for the STING protein. Since STING

is a keymodulator of IFN-mediated response against viruses and

cancer cells, the associationwith IFN signaling traits is consistent

with expectation. STING pathway agonists are in early clinical tri-

als and show promising results (Flood et al., 2019). Our results
(B) Leukocyte fraction and non-silent mutation rate (mean centered by cancer type

MSI status: MSI High (MSI-H) versus microsatellite stable (MSS), as identified by

determined. Samples are colored by cancer type. Significance p < 0.05 are anno

See Methods for cancer type abbreviations.

See also Figure S7 and Table S6.
suggest that patients’ responsiveness to these agents might

differ according to the TMEM173 genotype. STING genotypes

may also affect immune checkpoint blockade (Wang et al.,

2017) and radiotherapy-induced tumor immunogenicity (Van-

pouille-Boxet al., 2017), asmicemodels suggest thatSTINGacti-

vation is necessary for their efficacy.

We also found 14 genomic loci significantly associated with

traits that are part of the T cell/cytotoxic module. Of these, we

found the strongest evidence for colocalization between splicing

with RBL1 and a locus associated with Tcm cell ES. RBL1 has

homology with the well-known tumor suppressor RB and may

also act as a tumor suppressor (Ng et al., 2020). RB and RBL1

affect DNA repair through non-homologous end-joining (Cook

et al., 2015), and thus the effect we detected may be an indirect

effect of this splice variant on DNA repair in tumors. However, the

RB family of genes may also have direct effects on the immune

system (Garfin et al., 2013) by controlling proliferation of T lym-

phocytes (Mulligan et al., 1998), and expression of Toll-like re-

ceptors (Taura et al., 2012). Moreover, RB1 has been implicated

in T cell exclusion and immune checkpoint resistance (Jerby-Ar-

non et al., 2018).

Another study also performedGWAS of immune traits in TCGA

(Shahamatdar et al., 2020), but only analyzed a limited number of

traits (N = 17) and focused on European ancestry subjects (N =

5,788). In addition to the association between IL17RA locus

and Th17 cell ES which we determined is likely an eQTL, the

study also identified another locus, with lead SNP rs3366, asso-

ciated with Tfh cell proportion, inferred by CIBERSORT. This trait

was not included in our GWAS because it was not significantly

heritable. Shahamatdar et al. also found a relationship between

polygenic risk for autoimmune disorders and immune infiltration

into tumors (Shahamatdar et al., 2020). Our findings also support

the overlap between autoimmunity and cancer immune

response, specifically, with the identification of the IFIH1 locus.

Rare variant analyses demonstrated intriguing associations

between genetic variants related to cancer development and in-

tratumoral immune response. Among HR gene categories, only

BRCA1 mutations were associated with higher levels of favor-

able immune parameters. These effects were restricted to

BRCA samples and driven by the higher rate of basal-like pheno-

type among BRCA1mutation carriers. Triple negative/basal-like

BRCA samples have previously been shown to be more likely to

have robust immune infiltration compared with other breast can-

cer subtypes (Hendrickx et al., 2017; Jézéquel et al., 2015; Miller

et al., 2016). Our analyses suggest that BRCA1 may mediate its

tissue-restricted effect on immune response by uniquely modu-

lating oncogenic pathways captured by the intrinsic molecular

subtype classification. We also found that mutations in genes

in the MMR pathway were associated with a more robust im-

mune response. MMR deficiency is a strong predictor of

response to checkpoint inhibitors (Le et al., 2017) and is one of

the FDA indications for treatment with these agents regardless

of tissue of origin (Marcus et al., 2019). However, the observation
, (MC)) by combined germline mutation status across MMR genes and somatic

MANTIS score (threshold = 0.4, (Middha et al., 2017). MSI ND: MSI status not

tated from regression analyses using covariates as described in the Methods.
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that tumors from patients with germline MMR mutations have,

overall, a strong immune infiltration only when they display a

MSI-H phenotype suggests that MMR germline mutations,

alone, might not be sufficient to accurately predict response to

immunotherapy.

Patientswithgermlinemutations in telomere-stabilization genes

(DKC1 andPOT1) had lower lymphocytic infiltration. This could be

the effect of a reduced lymphocyte proliferative capacity following

antigen recognition due to a low telomere length (Rosenberg et al.,

2011). However, this interpretation should be taken with caution

since lower telomere length hasonly beendemonstrated formuta-

tions in DKC1 (Aubert and Lansdorp, 2008; Calado and Young,

2009) and not in POT1 (Rice et al., 2017).

The associations between germline mutations of genes in the

Wnt-b-catenin pathways and increased levels of T cell and

counter-regulatory mechanisms (PD-L1 and Treg cells), support

the critical role of this pathway in modulating anti-tumor immu-

nity (Luke et al., 2019; Spranger et al., 2015). While deleterious

germline mutations of Wnt-b-catenin negative regulators APC

and PTCH1 might predict pathway activation, it is possible that

such alterations induce the pathway’s downregulation at the so-

matic level by triggering compensatory mechanisms.

In summary, our analysis demonstrated that both common

and rare germline genetic variants can shape the functional

orientation of the tumor microenvironment and identified poten-

tial modulatory genes and mechanisms involved in this process.

The extended and curated list of variants, candidate genes, and

pipelines provided here as a resource for the scientific commu-

nity, might be exploited in the context of immunotherapy, spur-

ring studies that could lead to the development of personalized

therapeutic strategies.

LIMITATIONS OF THE STUDY

While our cohort was large, it is composed of 30 tumor types,

which may lead to a loss of true signals due to heterogeneity.

Larger studies focusing on specific cancers could expand and

refine our observations. Our heritability analyses only used com-

mon variants which likely underestimates heritability (Shi et al.,

2016), and heritability using whole-genome sequencing will be

likely higher. Many of the traits we analyzed were highly corre-

lated, thus the number of effectively independent immune fea-

tures is fewer than the sum of the individual traits. However,

this correlation reflects a natural feature of the immune system

(Orr�u et al., 2013). Our fine mapping efforts focused on gene

expression, which only explains �15% of heritability (Yao

et al., 2020). The remainder of non-coding variants associated

with complex traits may mediate their effects via conditional ef-

fects on gene expression, or via effects on a specific cell lineage

that would not be detectable in bulk tissue analyses. Future

studies of these loci in larger datasets of homogeneous cell

types and in studies using single cell sequencing may identify

more candidate genes, and mechanistic experiments might

further elucidate their function.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:
382 Immunity 54, 367–386, February 9, 2021
d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact and materials availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

B Human subjects

B Germline genotype data

B Whole exome sequencing data

B Immune traits

d METHOD DETAILS

B Affymetrix genome-wide SNP 6.0 quality control

B Stranding and reference panel imputation

B Final ancestry calls

B Feature selection for analysis

B Covariate selection

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Immune trait correlations and clustering

B Immune trait normalization for heritability, GWAS, and

rare variant analysis

B Germline analysis

B Heritability analysis

B Genome-wide association studies (GWAS)

B Rare variant analyses

B Epigenome chromatin states

B In silico Analysis of Non-synonymous amino acid sub-

stitutions

B Gene expression and splice quantitative trait locus

analysis, and Colocalization

B TCGA dataset

B GTEx dataset

B Colocalization analysis

B Expanded region criteria for colocalization

d DATA AND CODE AVAILABILITY

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

immuni.2021.01.011.

ACKNOWLEDGMENTS

We are grateful to the Society for Immunotherapy of Cancer (SITC) for the

logistical support of the investigator meeting within the SITC Cancer Immune

Responsiveness Workshop (San Francisco CA, US, April 2018; Houston, TX,

US, May 2019). We are also grateful to Noah Zaitlen and Andy Dahl for useful

discussions on heritability interaction analyses. This work was funded in part

by the National Institutes of Health R01CA227466 and K24CA169004 to E.Z.

and T32CA221709CancerMetabolism Training Program Postdoctoral Fellow-

ship to R.W.S., Qatar National Research Fund (QNRF) NPRP11S-0121-

180351 grant and the Sidra Precision Medicine Program internal grant

(SDR100035 and SDR400023) to D.B., Associazione Italiana per la Ricerca

sul Cancro (AIRC) grant IG2018-21846 to M.C., the Cancer Research Institute
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Tumor Samples Primary tumor samples See experimental methods for additional details.

Normal Samples Whole blood or surrounding

normal tissue

See experimental methods for additional details.

Processed Data

Germline Genotype Data Affymetrix 6.0 array genotype

type processed via Birdseed

https://portal.gdc.cancer.gov/ RRID:SCR_014514

Germline Genotype Data Whole exome sequencing data https://portal.gdc.cancer.gov/ RRID:SCR_014514

Gene expression data RNA-seq data https://portal.gdc.cancer.gov/ RRID:SCR_014514

MANTIS score Middha et al., 2017 https://github.com/OSU-SRLab/MANTIS

Immune traits (Thorsson et al., 2018) https://doi.org/10.1016/j.immuni.2018.03.023

Haplotype reference consortium

(McCarthy et al., 2016)

http://www.haplotype-reference-consortium.org/

SNP annotations Ensembl Variant Effect Predictor https://grch37.ensembl.org/info/docs/tools/vep/

index.html

GTEx Version 8 summary statistics GTEx website http://www.gtexportal.org/home/index.html

RRID:SCR_0f13042

GTEx Version 8 genotypes dbGAP https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/

study.cgi?study_id=phs000424.v8.p2

TCGA Splicing data Percent Spliced In (PSI) https://portal.gdc.cancer.gov/ RRID:SCR_014514

DICE Database of Immune Cell Expression,

Expression quantitative trait loci

(eQTLs) and Epigenomics

https://dice-database.org RRID:SCR_018259

Crystal structure of hSTING (H232) in

complex with ligand

RCSB PDB (Gao et al., 2013) PDB: 4LOH

Crystal structure of hSTING (R232) in

complex with ligand

RCSB PDB (Ergun et al., 2019) PDB: 6DNK

Software

PLINK 1.9 Chang et al., 2015 http://zzz.bwh.harvard.edu/plink/

https://www.cog-genomics.org/plink/

McCarthy Group tools (HRC-1000G-

check-bim-v4.29) – Stranding (V1.1 HRC.r1-

1.GRCh37.wgs.mac5.sites.tab)

https://wwwlwell.ox.ac.uk/�wrayner/tools/

Eagle v2.3 (Loh et al., 2016b) https://alkesgroup.broadinstitute.org/Eagle/

downloads/

Minimac3 (HRC r1.1.2016 reference panel)

(Fuchsberger et al., 2015;

Howie et al., 2012)

https://genome.sph.umich.edu/wiki/Minimac3

GCTA GREML 1.91.2beta Yang et al., 2011 https://cnsgenomics.com/software/gcta/

#Download

R 3.5.0 https://www.r-project.org/

R package: snplist_0.18.1 https://cran.r-project.org/web/packages/snplist/

index.html

Bioconductor package: SNPlocs.Hsapiens.

dbSNP144.GRCh37_0.99.20

https://bioconductor.org/packages/release/data/

annotation/html/SNPlocs.Hsapiens.dbSNP144.

GRCh37.html

Bioconductor package: biomaRt_2.36.1

(Host: http://grch37.ensembl.org/index.html)

(Durinck et al., 2005, 2009) https://bioconductor.org/packages/release/bioc/

html/biomaRt.html

Bioconductor package: GenomicRanges_

1.32.6

(Lawrence et al., 2013) https://bioconductor.org/packages/release/bioc/

html/GenomicRanges.html

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

LocusZoom (Genome Build:hg19; LD

Population: 1000 Genomes Project,

EUR, Nov 2014)

Pruim et al., 2010 http://locuszoom.org/

eCAVIAR (Hormozdiari et al., 2016) http://zarlab.cs.ucla.edu/tag/ecaviar/

Chimera 1.14 (Pettersen et al., 2004) https://www.cgl.ucsf.edu/chimera/

Deposited Code and Data

Sayaman, et al, TCGA QC

HRC Imputed Genotype Data

Sayaman et al., Immunity 2021 https://gdc.cancer.gov/about-data/

publications/CCG-AIM-2020

Sayaman et al., TCGA Germline-

Immune GWAS Summary Statistics

Sayaman et al., Immunity 2021 https://doi.org/10.6084/m9.figshare.13077920

Sayaman et al., Code Repository Sayaman et al., Immunity 2021 https://github.com/rwsayaman/TCGA_

PanCancer_Immune_Genetics

Sayaman et al., CRI iAtlas Interactive

Visualization of Results

Sayaman et al., Immunity 2021 https://www.cri-iatlas.org/
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RESOURCE AVAILABILITY

Lead contact and materials availability
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Rosalyn Sayaman

(rwsayaman@gmail.com). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects
A total of 11,521 genotype files from participants across 33 different cancer types included in TCGA were downloaded (Downloaded

May 30, 2018 from https://portal.gdc.cancer.gov/legacy-archive). The TCGA dataset has previously been described (Liu et al., 2018;

Thorsson et al., 2018). We excluded all participants with hematological malignancies (diffuse large B cell lymphoma, and acute

myeloid leukemia) and thymoma since these could not be characterized for immune cell infiltration based on gene expression ana-

lyses. We included all participants who had genotype data from Affymetrix array on at least one normal sample (peripheral blood or

matched normal tissue). After data cleaning (see below), the dataset for imputation included 10,128 individuals (Table S1). Further

removal of samples based on genetic relatedness, availability of immune traits and covariate data resulted in a dataset of 9,603 in-

dividuals. Of these individuals, there were a total of 4,585 men and 5,018 women based on self-reported sex. The participants’ age

ranged from 11yr to 90yr with amedian age of 61yr. Self-reported race and ethnicity were available for 8,510 samples, of which 7,073,

825, 583, 20, and 9 samples were reported to be from White/Caucasian, Black/African American, Asian, American Indian or Alaska

Native, and Native Hawaiian/Pacific Islanders, respectively. Self-reported ethnicity was reported on 7,351 samples, of which 295 and

7056 samples were reported to be fromHispanic/Latino, or Not Hispanic/Latino, respectively. Of these samples, 8,204were typed on

blood-derived normal, 1,397 on solid tissue normal and 2 on buccal cell normal tissue. Institutional review boards at each of the sites

that provided samples and data reviewed the consent forms and approved the use of samples.

Germline genotype data
Germline genotype data for common variants used in heritability analysis and GWAS were obtained from Affymetrix Genome Wide

SNP 6.0 arrays (TCGA legacy archive https://portal.gdc.cancer.gov/legacy-archive). Birdseed genotyping files representing 905,600

variants for 11,521 samples were downloaded.

Whole exome sequencing data
Germline genotype data for rare variants were based onwhole exome sequencing data (TCGA archive https://portal.gdc.cancer.gov/).

Processed whole exome sequencing data for pathogenic or likely pathogenic variants from (Huang et al., 2018) were considered for

rare variant analysis representing 10,389 individuals of which 9,138 had all of the phenotype and covariate information for analysis

(Table S1).

Immune traits
Immune traits considered for analysis were merged from two sources from (Thorsson et al., 2018): the Feature Matrix (56 immune

related features selected, Table S1) and the scores for 160 genes signatures in tumor samples (160 features, Scores_160_Signatur-

es.tsv) across 9,769 individuals (GDC manuscript publication page https://gdc.cancer.gov/about-data/publications/panimmune).
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METHOD DETAILS

Affymetrix genome-wide SNP 6.0 quality control
Birdseed files were read in R v3.5.0 using the Affymetrix SNP Array 6.0 (release 35) annotation file, and 905,422 variants were suc-

cessfully loaded and analyzed in PLINK version 1.9. Samples were cross-referenced against previously included genotyping samples

(Thorsson et al., 2018). Based on established TCGA barcode identifiers, samples annotated with Analyte code ‘‘G’’ (Whole Genome

Amplification) were further excluded. A final set of 10,946 included samples with Analyte code ‘‘D’’ (DNA) were retained for quality

assessment.

Stringent quality control measures were applied to the SNP genotyping data (Figure 1, top QC panel). SNPs and individuals with

greater than 5% missingness were excluded; leaving a total of 861,351 variants and 10,917 samples for subsequent analysis.

Initial PCA ancestry analysis was performed to facilitate heterozygosity calculations. PCA without LD pruning was performed in

PLINK 1.9 (Chang et al., 2015), and visual examination of the concordance of the principal component plots with the self-reported

race and ethnicity annotations revealed that the first 3-4 PCs captured population structure information, while PCs 5-6 captured out-

liers. PCA initial ancestry clusters were determined by performing both k-means and partition around medoids (PAM) clustering on

either the first three or first four PCs as previously described (Carrot-Zhang et al., 2020) We computed gap statistics and average

silhouette widths iteratively for the number of clusters, k = 1 to 10 for k-means and PAM methods respectively to find the optimal

number of clusters for each method. We found PAM using the three PCs yielding 4 optimal clusters to show high concordance

with self-reported race/ethnicity (ancestry cluster 1 = European, cluster 2 = Asian, cluster 3 = African, cluster 4 = American). Based

on the initial ancestry cluster assignments, heterozygosity was calculated in PLINK 1.9 within each initial PCA-based ancestry cluster

and a total of 250 samples with heterozygosity > 3*SD above the ancestry mean were removed.

Selection of a representative sample for each individual was then conducted. For individuals represented by more than one sam-

ple, blood-derived normal samples were preferentially selected; for those with more than one blood-derived samples, samples with

higher call rates were retained. After these steps, a total of 10,128 unique individuals remained for subsequent analysis.

Final filtering steps for SNPs were conducted across the 10,128 unique individuals and restricted to autosomal chrs. Hardy-

Weinberg Equilibrium (HWE) was calculated in PLINK 1.9 across individuals within the largest ancestry cluster (European ancestry

cluster 1). SNPs that deviated from the expectation under HWE (p < 1x10�6) within the European ancestry cluster were excluded

with the exception of SNPs previously associated with any cancer as reported in the GWAS catalog (p < 5x10�8) (Rashkin

et al., 2019) since they may deviate from HWE in cancer patients. Minor allele frequency (MAF) was calculated and variants with

MAF < 0.005were excluded. Finally, duplicate SNPswith identical genomic first position were removed. A total of 838,948 autosomal

chr variants for 10,128 unique individuals passed the aforementioned QC steps.

Stranding and reference panel imputation
The quality-controlled genotyping file was stranded and imputed against the Haplotype Reference Consortium (HRC) (Loh et al.,

2016a) (McCarthy et al., 2016). Prior to HRC stranding, all palindromic SNPs (A/T or G/C) were removed. Stranding was then per-

formed using the McCarthy Group tools (HRC-1000G-check-bim-v4.29), which compares our data genotyping alleles to the corre-

sponding SNP alleles from HRC (v1.1 HRC.r1-1.GRCh37.wgs.mac5.sites.tab), leaving 680,389 correctly matched variants for

imputation.

Phasing and imputation were performed using a standard pipeline on the Michigan Imputation Server (MIS). Phasing was per-

formed using Eagle version v2.3 (Loh et al., 2016b) on the variant call file (VCF). To reduce the run time, the VCF file was divided

into 22 files corresponding to individual autosomal chrs. By default, Eagle restricts analysis to bi-allelic variants that exist in both

the target and reference data. Minimac3 was used to run the imputation. For each of the 22 VCF files, the MIS breaks the dataset

into non-overlapping chunks prior to imputation. For HRC imputation, the HRC r1.1.2016 reference panel was selected using mixed

population for QC, with a total of 39,127,678 SNPs returned after imputation.

Final ancestry calls
PCA was performed on the final quality-controlled genotyping file and final PAM-based ancestry clusters were computed as previ-

ously described (Carrot-Zhang et al., 2020) for the 10,128 individuals for optimal k = 4. We found very high concordance of initial and

final ancestry assignments (99.98%matching, the 2 samples varying between initial and final ancestry cluster computation assigned

to NA).

The four ancestry cluster are as follows: (1) PAM ancestry cluster 1 is concordant with European ancestry, capturing 97.27% of

individuals self-reporting as White, as well as 82.16% of individuals with self-reported non-Hispanic/non-Latino ancestry and

45.96% with self-reported Hispanic/Latino ancestry; (2) ancestry cluster 2 with African ancestry, capturing of 97.53% of individuals

self-reporting as Black/African-American race; (3) ancestry cluster 3 with Asian ancestry, capturing 90.88%of individuals self-report-

ing as Asian and 88.89% self-reporting as Native Hawaiian/Pacific Islander; and (4) ancestry cluster 4 with a subgroup of individuals

with American ancestry capturing 60% of individuals self-reporting as American Indian /Alaska Native and 47.2% with self-reported

Hispanic/Latino ethnicity (GDC Publication Page Figure S1-B, https://gdc.cancer.gov/about-data/publications/CCG-AIM-2020).

PC1-7 showed further population sub-structure in the Asian and European ancestry clusters (GDC Publication Page Figure S2,

https://gdc.cancer.gov/about-data/publications/CCG-AIM-2020). PAM ancestry sub-clusters were computed using PC1-7 for indi-

viduals within the Asian ancestry cluster which yielded two optimal sub-clusters (GDC Publication Page Figure S2-A), and within the
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European ancestry cluster which yielded three optimal sub-clusters (GDC Publication Page Figure S2-B). Of note, 72.46% of Euro-

pean sub-cluster 3 self-reports as Asian (15.94% have no race reported). Ancestry clusters, sub-clusters, self-reported race and

ethnicity and PC1-7 are provided for each individual (Table S1).

Feature selection for analysis
Immune traits considered for analysis were merged from two sources in Thorsson et al. (Thorsson et al., 2018): the Feature Matrix

(Table S1 of Thorsson et al., 56 immune related features selected) and the scores for 160 genes signatures in tumor samples (160

features, Scores_160_Signatures.tsv on GDC manuscript publication page https://gdc.cancer.gov/about-data/publications/

panimmune).

The 216 features were then filtered at three levels: (i) Level 1 filtering removed redundant features based on overlap of the feature

matrix and the 160 signature feature set; (ii) Level 2 filtering removed features with limited interpretability; (iii) Level 3 filtering removed

features with highly skewed distributions, which would not be amenable to subsequent analyses. A final set of 139 features was

used in subsequent germline analysis. Table S2 lists all 216 previously well-characterized immune traits, and the final 139 immune

traits selected (Figure 1, bottom Immune Traits panel). These selected immune phenotypes encompass six broadly defined

immune trait phenotype categories: (1) Leukocyte subset ES, which include 24 immune cell-specific activation scores as captured

by single-sample ssGSEA (Bindea et al., 2013); (2) Leukocyte Subset Percentages (%), which include 26 immune cell relative pro-

portion measures (22 individual cells and 4 aggregates, as estimated by CIBERSORT) (Gentles et al., 2015; Thorsson et al., 2018);

(3) Overall Proportion, which includes three measures, namely leukocyte fraction, stromal fraction, and tumor infiltrating leukocyte

(TIL) regional fraction; (4) Adaptive Receptor, which includes four scores related to TCR and BCR Shannon diversity and richness;

(5) Expression Signature, which includes four ssGSEA scores specific to lymphatic vessels (Bindea et al., 2013), antigen-presenting

machinery (APM1 and APM2) (Sxenbabao�glu et al., 2016), and angiogenesis (Sxenbabao�glu et al., 2016), a collection of 68 gene sig-

natures related to immunomodulatory signaling including IFN signaling, TGF-b, wound healing (core serum response) and T/B cell

response cataloged from earlier studies (Amara et al., 2016) (Wolf et al., 2014), and an Immunologic Constant of Rejection (ICR) signa-

ture summarizing a Th1/cytotoxic polarization of the tumor microenvironment associated with favorable prognosis and responsive-

ness to immunotherapy (Galon et al., 2013; Hendrickx et al., 2017; Roelands et al., 2020; Rozenblit et al., 2019); and (6) Attractor

Metagene, which includes nine TCGA-based co-expression signatures (metagene attractors) (Cheng et al., 2013a, 2013b) (Table

S2). Eight immune traits are represented by single genes: Treg cells (FOXP3), CD68, CD8A, PD1 data (PDCD1), PDL1 data

(CD274), CTLA4 data (CTLA4), TREM1 data (TREM1), and DAP12 data (TYROBP).

We used the term immune trait ‘‘categories’’ to describe the methodological origin of the immune trait measures including the six

categories above, e.g., 1. Leukocyte subset ES (ssGSEA), 2. Leukocyte Subset Percentages (%), etc. We used the term ‘‘module’’ to

describe the grouping of immune traits that were generated based on clustering (Figure S1). We used the term ‘‘immune subtype’’ to

describe the immune grouping of samples previously characterized by Thorsson et al., (Thorsson et al., 2018) and used the same

sample assignments used in that report.

Covariate selection
For each analysis, we included age, sex, cancer type, and genetic ancestry from the PCA (PC1-7) as covariates, unless otherwise

indicated. Self-reported age (age at diagnosis in years) from clinical data and PC1-7 were used as continuous covariates. Cancer

type based on TCGA study assignment and curated genotype-imputed sex assignments were used as categorical covariates.

Due to missing self-reported sex, and discrepancy in self-reported and genotype-type based sex in the data, we carefully curated

sex assignments. We recovered sex information by using X chr homozygosity estimate (XHE) after removal of the pseudo-autosomal

region of the X chr. For those with missing sex information, individuals with XHE < 0.2 were assigned as females and individuals with

XHE > 0.8 were assigned as males (N = 21 males, N = 28 females). Self-reported sex assignments were curated with individuals self-

reporting asmales with XHE < 0.2 reassigned as female (N = 20 reassigned as females), and individuals self-reporting as females with

XHE > 0.8 reassigned as males (N = 6 reassigned as males). For brevity in the remainder of the manuscript, we refer to curated ge-

notype-imputed sex assignments simply as sex. For a subset of analyses, we also included immune subtype as a covariate, as indi-

cated in the text.

QUANTIFICATION AND STATISTICAL ANALYSIS

Immune trait correlations and clustering
We calculated Pearson’s correlation coefficients across all pairs of the 139 immune traits from 9,769 individuals. We then used hi-

erarchical clustering, using 1-correlation as distance metric and complete agglomerative clustering method (R heatmap.2 function in

gplots package), to identify modules of the immune traits.

Immune trait normalization for heritability, GWAS, and rare variant analysis
For immune phenotypes that appeared approximately normally distributed or normally distributed after correction for immune sub-

type, we calculated heritability using the immune phenotype without any transformation/normalization. For immune phenotypes that

were highly skewed we applied a log10 transformation, and those that were approximately normally distributed after transformation

were analyzed as log-transformed values. For immune phenotypes that could not be normalized with log10 transformation (usually
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due to a large number of 0 values), we dichotomized them at themedian (i.e., higher and lower thanmedian). These phenotypes were

treated as binary variables in subsequent analysis. Traits that underwent transformation and dichotomization are indicated in Ta-

ble S2.

Germline analysis
To examine the contribution of germline genetic variation to the functional orientation of the immunemicroenvironment, we conduct-

ed three types of analyses: (1) parallel heritability analysis (NEUR = 7,813, NAFR = 863, NASIAN = 570, NAMR = 209 individuals), (2) GWAS

(N = 9,603), and (3) rare variant analysis (N = 9,138) across 30 different non-hematological cancer types in TCGA (Figure 1, middle

Analysis panel). Number of individuals, N, for each analysis type represented the maximum number of samples, however analyses

per immune trait proceeded using fewer samples if NA values for specific individuals were present in a given immune trait.

Heritability analysis
Estimates of genome-wide heritability of the 139 described immune traits were calculated using GCTA GREML approach imple-

mented in GCTA 1.91.2beta, which simultaneously models the effect of all genetic variants (MAF > 0.01) (Yang et al., 2010, 2011).

GREML calculates a genetic relatedness matrix (GRM) as a measure of the genetic similarity of unrelated individuals (GRM <

0.05) and compares it to the similarity of the measured immunological traits to calculate the total narrow-sense contribution of

genotypic variance to overall phenotypic variance, V(Genotype)/V(Phenotype) (Yang et al., 2010, 2011). All GREML analyses used

the default average information (AI) algorithm to run REML iterations.

Since calculation of the GRM results in biased relatedness estimates for pairs of individuals who have different ancestry, we

restricted heritability analysis primarily within the European ancestry group (NEUR = 7,813, M = 701,189 SNPs, K = 32,292,666

GRM elements), which constitutes the largest ancestry population; secondary analysis is performed in the smaller African (NAFR =

863, M = 791,989, K = 409,060), Asian (NASIAN = 570, M = 649,768, K = 183,315), and American (NAMR = 209, M = 751,507, K =

24,753) ancestry groups. The four genetic ancestry groupswere derived from optimal partition aroundmedoids (PAM) clustering (Fig-

ure S2A) of individuals in principal components 1-3 based on their genotyping data (Figure S2B).

Heritability analyses are generally only well-powered for sample sizes of > 1000; therefore, only the European ancestry subgroup

was adequately powered and were presented in the main results. However, since we have previously seen associations between

several of these immune parameters with various ancestral populations (Thorsson et al., 2018), we performed the heritability analyses

separately in African, Asian, and American ancestral populations and present these in the supplementary results. To reduce bias in

the heritability estimates, we removed one of each pair of related individuals with Ajk > 0.05 (calculated from SNPs with MAF > 0.01)

prior to running GREML. We calculated heritability using an unconstrained approach (allowing heritability to be < 0). Constraining the

heritability to a range of 0-1 may lead to an upward bias of the low heritability values, which is likely to be worse in smaller datasets.

We used the likelihood ratio test (LRT) implemented in GREML to test if heritability is different than zero for each of the immune traits

analyzed and used Benjamini-Hochberg adjustment (Benjamini and Hochberg, 1995) to calculate the FDR. We present both FDR

adjusted p values and unadjusted p values in the manuscript. All heritability analyses were run with age, cancer type, sex and PC

1-7 as covariates unless otherwise indicated.

We also usedGREML to determinewhether there are any contextual factors that interact with genome-wide common variant effects,

including themajor immune subtypes as determinedby Thorsson et al. and somaticmutations (divided into tertiles and dichotomized at

10 MB). We implemented the gene x environment (GxE) feature calculation in the European ancestry cluster in GREML. For those im-

mune traits for which we found nominally significant (p < 0.05) interactions, we calculated heritability in each stratified subset, aswell as

with immune subtype as an additional covariate. For GxE calculations, the LRT tests the significance of the variance of GxE interaction

effects.

Genome-wide association studies (GWAS)
We selected each of the immune phenotypes that demonstrated nominally significant genome-wide heritability (N = 33) for GWAS.

GWAS was conducted on all of the genotyped SNPs that passed QC and all of the imputed SNPs that had imputation R2 > 0.5 and

minor allele frequency > 0.005 in the 9,603 unrelated individuals (PLINK 1.9 identity by descent, IBD, pihat < 0.25). Minor allele fre-

quencies were recalculated post-imputation for only the subset of 9,603 individuals (PLINK 1.9). Of the 39,127,678 SNPs available

after imputation, 10,955,441 passed both imputation quality and frequency thresholds and thus were included in the association

analysis.

GWAS was performed using PLINK 1.9. Immune phenotypes that were approximately normally distributed or normally distributed

after stratification by covariates were tested for association with SNPs using linear regression with age, sex, cancer type, and PC1-7

as covariates. Immune traits that were dichotomized for heritability analyses were analyzed using logistic regression models, with

the same covariates. For each GWASwe also calculated the genome-wide inflation coefficient (lambda). We used the traditional cutoff

of p < 5x10�8 as a cutoff for genome-wide significance and p < 1x10�6 to denote suggestive loci. Since we only selected the subset of

phenotypes that were heritable and since many of the phenotypes were highly correlated, we did not correct the GWAS for the number

of phenotypes analyzed. SNPs were annotated based on spanned genomic ranges (R v3.5.0, Bioconductor package Genomi-

cRanges_1.32.6) with rsIDs (R v3.5.0, R package snplist_0.18.1, Bioconductor package SNPlocs.Hsapiens.dbSNP144.

GRCh37_0.99.20) and with genes within ± 50KB, ± 500KB, and ± 1MB of the SNP (R v3.5.0, Bioconductor package biomaRt_2.36.1

using http://grch37.ensembl.org/index.html as host). Variant annotations for all genome-wide and suggestive SNPs were determined
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using the web interface of the Ensembl Variant Effect Predictor (VEP, https://grch37.ensembl.org/info/docs/tools/vep/index.html). All

annotations were based on Homo sapiens (human) genome assembly GRCh37 (hg19) from Genome Reference Consortium. All asso-

ciation statistics for the GWAS are available at Figshare https://doi.org/10.6084/m9.figshare.13077920.

To plot the individual locus results we used LocusZoom (Pruim et al., 2010), which shows LD estimates (r2 color map) and recom-

bination rates (blue line) around the genome-wide significant loci. The online version of LocusZoom did not plot the LD information for

TMEM173; therefore, we downloaded a standalone version and ran it locally using LD information computed in TCGA data.

Within cancer association tests for forest plots were run with age, sex and PC1-7 as covariates, except in CESC, OV, PRAD, TGCT,

UCEC andUCSwhere only age and PC1-7were used. The 30 cancer types included in our analyses are abbreviated as follows: ACC:

Adrenocortical Carcinoma; BLCA: Bladder Urothelial Carcinoma; BRCA: Breast Invasive Carcinoma; CESC: Cervical Squamous Cell

Carcinoma and Endocervical Adenocarcinoma; CHOL: Cholangiocarcinoma; COAD: Colon Adenocarcinoma; ESCA: Esophageal

Carcinoma; GBM: Glioblastoma; HNSC: Head and Neck Squamous Cell Carcinoma; KICH: Kidney Chromophobe; KIRC: Kidney

Renal Clear Cell Carcinoma; KIRP: Kidney Renal Papillary Cell Carcinoma; LGG: Low Grade Glioma; LIHC: Liver Hepatocellular

Carcinoma; LUAD: Lung Adenocarcinoma; LUSC: Lung Squamous Cell Carcinoma; MESO:Mesothelioma; OV: Ovarian Serous Cys-

tadenocarcinoma; PAAD: Pancreatic Adenocarcinoma; PCPG: Pheochromocytoma and Paraganglioma; PRAD: Prostate Adenocar-

cinoma; READ: Rectum Adenocarcinoma; SARC: Sarcoma; SKCM: Skin Cutaneous Melanoma; STAD: Stomach Adenocarcinoma;

TGCT: Testicular Germ Cell Tumors; THCA: Thyroid Carcinoma; UCEC: Uterine Corpus Endometrial Carcinoma; UCS: Uterine car-

cinosarcoma; UVM Uveal Melanoma.

Rare variant analyses
For rare variant analysis, we focused on well-annotated, germline pathogenic or likely pathogenic cancer predisposition variants as

previously defined (allele frequency in 1000 Genomes and ExAC (release r0.3.1) < 0.05%) (Huang et al., 2018).

Exome files related to samples for which all the covariates (age, sex, cancer type, and PC1-7) and at least one immune trait was

available were retained (N = 9,138). There were 832 pathogenic/likely pathogenic SNPs/Indels events with at least one copy of rare

allele in the whole exome sequencing data, corresponding to 586 distinct pathogenic SNPs/Indels mapping to 99 genes.

We performed a pathway burden analysis using selected pre-defined biological pathways such as DNA damage repair and onco-

genic processes, pan-cancer and per cancer (Bailey et al., 2018; Huang et al., 2018; Knijnenburg et al., 2018). These pathways were

manually curated to generate a list of mutually exclusive categories (genotypic variables). The only genes that were not collapsed into

pathwayswereBRCA1 andBRCA2 for which a sufficient number of events across cancers exist. Overall, 21 genotypic variables were

used for analyses (Figure S7A). In the pan-cancer analysis, we only included genotypic variables with number of events (mutations)

greater than 4 across cancers, including a total of 90 genes. In the per-cancer analysis, we only included genes or pathways with at

least 3 events in the analyses. For each pathway, variants that fall within its selected set of genes were collapsed based on the pres-

ence or absence of any rare variant (i.e., 0 if no rare variant was present and 1 if there is at least one variant). We conducted regression

analyses (linear or logistic, as done for GWAS) to assess the association between the pathways’ burden of rare variants and immune

traits. Traits assessed in these analyses were the same as the ones used for heritability analyses, with the addition of the immune

subtypes (C1, C2, etc.), DNA-alteration related metrics such as the mutational load, the neoantigen load, the degree of copy number

alterations (Thorsson et al., 2018) and the MANTIS score (threshold = 0.4, Middha et al., 2017) (full list in Table S2). All pan-cancer

regression models included the following covariates: age, sex, cancer type, and PC1-7. The same covariates were used for per-can-

cer regression analyses, except for CESC, OV, PRAD, TGCT, UCEC and UCS where only age and PC1-7 were used.

To check whether the results were driven by the mutational load, we ran regression models that include this variable as a covariate

in the regression model. Additionally, in the BRCA cohort, additional analyses were performed stratifying for basal-like and non-

basal-like subtypes and adding the molecular subtype (basal-like and non-basal like) as a covariate (see Table S6).

In the pan-cancer analysis, we used a Benjamini-Hochberg FDR (Benjamini and Hochberg, 1995) to correct for multiple hypothesis

testing, accounting for all 21 genes and pathways tested and 154 phenotypes (139 immune traits, 9 DNA related metrics, and 6 im-

mune subtypes). We used a cutoff of FDR p < 0.1 to identify significant gene/pathway-immune trait associations and a threshold of

nominal p < 0.005 (FDR p < 0.25) to identify suggestive associations. We used a more permissive cut-off in these analyses than the

ones used in the heritability andGWAS to reduce type II error due to the low number of events (germlinemutations). In addition, leuko-

cyte fraction and non-silent mutation rate were compared by categories defined by combining germlinemutation status acrossMMR

genes (MMRmutated versusMMRwild-type) and somaticMSI status (MSI-H versusMSS, as identified byMANTIS score, threshold =

0.4 (Middha et al., 2017)). For such comparisons, regression analyses were adjusted for sex, age, and PC1-7. All rare variant analyses

were performed using R (http://www.R-project.org/).

Epigenome chromatin states
Mnemonic bed files for the Expanded-18-state model, which takes into account six chromatin marks from ChIP-seq datasets

(H3K4me3, H3K4me1, H3K36me3, H3K27me3, H3K9me3, H3K27ac) (Roadmap Epigenomics Consortium et al., 2015), were down-

loaded for 98 annotated epigenomes (https://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html#exp_18state). We iden-

tified 25 of these epigenomes to be specifically immune-related, including those associated with primary immune cells, as well as

bonemarrow-derivedmesenchymal cells, leukemia-associated cells, thymus, and spleen (Table S4). The first 12 states were defined

to be active states associated with expressed genes, while the last six states were defined to be inactive or repressed states.

Epigenome IDs were mapped to corresponding Standardized Epigenome Names (https://docs.google.com/spreadsheets/d/
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1yikGx4MsO9Ei36b64yOy9Vb6oPC5IBGlFbYEt-N6gOM/edit#gid=15). The chromatin state at each significant and suggestive SNP

was extracted based on positional overlaps with each epigenome.

In silico Analysis of Non-synonymous amino acid substitutions
We used Chimera 1.14 to display the structure of the STING protein with the H232 and R232 alleles and to align these to the ligand

(Pettersen et al., 2004). We aligned the A chains of the structures from the PDB files 4LOH (containing the H232 allele) (Gao et al.,

2013) and 6DNK (containing the R232 allele) (Ergun et al., 2019) using the Matchmaker function from Chimera.

Gene expression and splice quantitative trait locus analysis, and Colocalization
We performed eQTL and sQTL analyses in TCGA and used summary statistics from the GTEx datasets to search for potential candi-

date genes. We excluded the HLA and IL17RA loci since SNPs at these loci are known eQTLs for genes that are part of the immune

trait. For the significant and suggestive SNPs, we tested all genes within ± 1MB for eQTL and all transcipts within ± 500KB for sQTL.

We used a shorter range for sQTLs with the assumption that SNPs affecting splicing are likely to act at a shorter distance.

TCGA dataset
RNA-seq gene expression and splicing data were downloaded from the NIH Genomics Data Commons (https://gdc.cancer.gov/

about-data/publications/pancanatlas and https://gdc.cancer.gov/about-data/publications/PanCanAtlas-Splicing-2018 (Kahles

et al., 2018). For the sQTL analysis, we considered the following splicing categories: 30, 50, exome skipping, intron retention, and

mutually exclusive exon events quantified by the Percent Spliced In (PSI) (Kahles et al., 2018). Only splicing events with more

than 800 non-missing observations (�10% of the total data) were considered. Association analyses between either gene expression

or PSI and the imputed SNPs were performed using linear regression using age, sex, cancer type, and PC1-7 as covariates. We

calculated FDR for each SNP separately, under the assumption that the SNP was already either significant or suggestive, and

thus we had to correct for each of the genes at the locus but not all of the other SNPs (Table S5). We then selected the SNP-

gene expression (eQTL) or SNP-gene splicing (sQTL) pairs with FDR p < 0.1 for further colocalization analysis.

GTEx dataset
We downloaded all summary statistics for expression quantitative loci (eQTL - GTEx_Analysis_v8_eQTL_all_associations), and

splicing quantitative loci (sQTL - GTEx_Analysis_v8_sQTL_all_associations) from GTEx project (https://console.cloud.google.

com/storage/browser/gtex-resources) using the results from the latest version of the GTEx database (Version 8). For each SNP

that had a genome-wide significant or suggestive association with one of the 33 immune traits by GWAS, we extracted all of the as-

sociation statistics from the summary statistics for eQTLs within ± 1MB and for sQTLs within ± 500 KB from all tissues in the GTEx

summary statistics dataset. We then calculated FDR for each SNP, correcting for all of the genes at the locus across all tissues as we

did for TCGA. For eQTLs and sQTLs that had FDR p < 0.1, we pursued colocalization as below. TCGA GWAS summary statistics are

annotated in Build 37, GTEx QTL summary stats are annotated in Build 38, when appropriate, liftover fromBuild 38 to 37 are provided

using R/Bionconductor packages AnnotationHub (v2.12.1) (AH14150 chain file) and rtracklayer (v1.40.6). In the GTEx summary file

(Table S5) we annotated both Build 37 and Build 38 positions.

Colocalization analysis
Weperformed colocalization analysis using eCAVIAR (Hormozdiari et al., 2016) on both TCGA and GTEx results. eCAVIAR computes

a posterior probability of causality (CLPP) based on association data and LD structure for the eQTL or sQTL and the trait GWAS and

then calculates the joint probability of both of these being causal. It requires both summary statistics from GWAS and from the eQTL

or sQTL analysis and the LD matrix of SNPs used in both analyses. For TCGA, we began with all SNPs that had FDR p < 0.1 with at

least one gene and/or transcript and computed the eQTL and sQTL associations for the surrounding SNPs from the index SNP for

that same gene/transcript using the same approach as outlined above. For GTEx, we began with SNP-gene expression or SNP-gene

splicing pairs that met our FDR p < 0.1 criteria and extracted the eQTL and sQTL results for the surrounding SNPs from the summary

results. For the GWAS and TCGA analyses, we calculated the genotype correlation (r) at each locus from the genotype data. For the

GTEx analysis, we downloaded the individual genotype data from dbGAP for GTEx participants (https://www.ncbi.nlm.nih.gov/

projects/gap/cgi-bin/study.cgi?study_id=phs000424.v8.p2) and calculated genotypic correlation between SNPs in R. We then ran

eCAVIAR separately for each FDR p < 0.1 eQTL and sQTL association from TCGA and GTEx, considering models at each locus

that assume one or two causal variants. For each SNP-gene expression or SNP-gene splicing category pair, 200 SNPs (± 100

SNPs) around the index SNP were included in colocalization analysis. The CLPP of each SNP being causal was calculated, and

also a regional CLPP by summing all 201 SNP CLPPs. We used a posterior probability of > 0.01 to consider plausible colocalization,

including both the 1 and 2 locus model and considering the sum of the posterior probability SNPs in the colocalization results.

Expanded region criteria for colocalization
Since eCAVIAR identifiedmultiple genes at the same locus for many loci that have plausible colocalization within a ± 100 SNP bound-

ary, we sought stronger evidence for colocalization at the loci where eCAVIAR found colocalization by examining an expanded re-

gion. We reasoned that a gene or transcript that is causal for the immune trait should not be more strongly associated with another

SNP in the region that has little or no evidence of association with the immune trait. Therefore, for each gene or splice variant that had
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plausible colocalization by eCAVIAR, we performed an expanded region search (± 1MB for eQTL and ± 500KB for sQTL) to see if we

can identify one or more SNPs that had a stronger effect in the eQTL or sQTL analysis in the same tissue/dataset, which we called

‘‘counter-evidence’’ SNPs. If eCAVIAR produced plausible evidence of colocalization (posterior probability > 0.01) and we could find

no SNPs that met our counter-evidence criteria in the expanded region, we considered the expanded region evidence for colocal-

ization as strong. If we did find SNPs that met our counter-evidence criteria in the expanded region, then we compared the signif-

icance level for the eQTL or sQTL association of the counter-evidence SNP versus the eQTL or sQTL association with the index

SNP (associated with the immune trait). If the counter-evidence SNP association with eQTL or sQTL had a -log10 p value that was

%1.5 higher than the index SNP (GWAS significant SNP for the immune trait), then we considered the expanded region evidence

as intermediate. If the difference in -log10 p values was > 1.5, we considered the expanded region analysis to be negative.

To visualize the colocalization in the expanded region, we generated plots that show the -log10 pQTL versus -log10 pGWAS for all

of the GWAS significant SNPswith CLPP > 0.01. The plots included the association p values for all of the SNPs at ± 1MB for eQTL and

at ± 500KB for sQTL from the gene which had a CLPP > 0.01. These plots are available at Figshare (GTEX expanded region analysis

plots: https://doi.org/10.6084/m9.figshare.13089341; TCGA expanded region analysis plots: https://doi.org/10.6084/m9.figshare.

13090031. We color-coded these plots with the LD, based on the LD matrix from the TCGA. Counter-SNPs are found in the top

left corner of these plots (i.e., strong association with the eQTL or sQTL but no association with the immune trait). Conversely if there

were no counter-SNPs, then the strongest SNPs for association with the immune trait were also the strongest SNPs for the associ-

ation with the eQTL or sQTL.

DATA AND CODE AVAILABILITY

The TCGA GenomeWide SNP 6.0 birdseed genotyping data and clinical data can be found at the legacy archive of the GDC (https://

portal.gdc.cancer.gov/legacy-archive). Access to the TCGA original birdseed and pre-processed quality controlled genotyping data

imputed to HRC generated in the current manuscript ("Sayaman et al TCGA QC HRC Imputed Genotyping Data") requires GDC

controlled access permission approval. The quality controlled and HRC imputed genotyping data were contributed towards ancestry

analyses (Carrot-Zhang et al., 2020) and are accessible at the GDC publication page (https://gdc.cancer.gov/about-data/

publications/CCG-AIM-2020). Please cite the current manuscript (Sayaman, Saad et al., Immunity 2021) when using the quality

controlled and HRC imputed genotyping data. The summary statistics from the GWAS have been deposited to FigShare (https://

doi.org/10.6084/m9.figshare.13077920). Details for software availability are in the Key Resources Table. The code generated during

this study has been deposited to github (https://github.com/rwsayaman/TCGA_PanCancer_Immune_Genetics). Interactive visuali-

zation is available at CRI iAtlas (https://www.cri-iatlas.org/).
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