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Abstract 43 

An immune active cancer phenotype typified by a T helper 1 (Th-1) immune response has 44 

been associated with increased responsiveness to immunotherapy and favorable prognosis 45 
in some but not all cancer types. The reason of this differential prognostic connotation remains 46 

unknown. Through a multi-modal Pan-cancer analysis among 31 different histologies (9,282 47 

patients), we demonstrated that the favorable prognostic connotation conferred by the 48 
presence of a Th-1 immune response was abolished in tumors displaying specific tumor-cell 49 

intrinsic attributes such as high TGF-ß signaling and low proliferation capacity. This 50 

observation was validated in the context of immune-checkpoint inhibition. WNT-ß catenin, 51 
barrier molecules, Notch, hedgehog, mismatch repair, telomerase activity, and AMPK 52 

signaling were the pathways most coherently associated with an immune silent phenotype 53 

together with mutations of driver genes including IDH1/2, FOXA2, HDAC3, PSIP1, MAP3K1, 54 

KRAS, NRAS, EGFR, FGFR3, WNT5A, and IRF7. Our findings could be used to prioritize 55 

hierarchically relevant targets for combination therapies and to refine stratification algorithms. 56 
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Introduction 67 

Evidence of the effects of anti-tumoral immunity on cancer progression has accumulated 68 
over the last decades. The identification of tumor immune escape mechanisms, most 69 

importantly the characterization of immune checkpoints, led to major advances in 70 

immunotherapy. Immune checkpoint inhibitors have dramatically improved clinical outcome 71 
for a subset of patients across multiple cancer types. Despite this progress, the majority of 72 

patients (60-80%) still fail to respond (Emens et al., 2017; Gong et al., 2018). Understanding 73 

the relationship between tumor cell and the immune system is critical to develop more effective 74 
therapeutic strategies.  75 

A pre-existing intratumoral anti-tumor immune response has been associated with 76 

favorable outcome and responsiveness to immunotherapy (Galon et al., 2013). However, 77 
multiple studies have reported differences in the association between measures of 78 

intratumoral immune activity and survival across different cancer types (Charoentong et al., 79 

2017; Danaher et al., 2018; Tamborero et al., 2018; Thorsson et al., 2018; Varn et al., 2017). 80 
In breast cancer, a positive association between survival and density of tumor infiltrating 81 
lymphocytes, as estimated by transcriptomic data, was restricted to tumors displaying a high 82 
mutational load or an aggressive/high proliferative  phenotype (Miller et al., 2016; Nagalla et 83 
al., 2013; Thomas et al., 2018). Proposed transcriptome-based immunological classifications 84 

range from a measure of cytolytic activity by mean expression of GZMA and PRF1 genes 85 
(Rooney et al., 2015), to reflections of immune cell infiltration by cell-specific transcriptional 86 
profiles (Bindea et al., 2013; Nagalla et al., 2013), or gene signatures reflecting molecular 87 
components of an active antitumor immune response, including Major Histocompatibility 88 

Complex (MHC), co-stimulatory or immunomodulatory molecules (Ayers et al., 2017; 89 
Charoentong et al., 2017; Wang et al., 2008). Reported prognostic and predictive signatures 90 
typically show overlapping genes or genes involved in conserved immunologic processes 91 

(Bedognetti et al., 2016, 2013; Galon et al., 2013; Wang et al., 2013b, 2013a). We termed 92 
these mechanisms as the Immunologic Constant of Rejection (ICR) (Galon et al., 2013; Wang 93 

et al., 2008). The ICR signature incorporates IFN-stimulated genes driven by transcription 94 

factors IRF1 and STAT1, CCR5 and CXCR3 ligands, immune effector molecules, and counter-95 
activated immune regulatory genes (Hendrickx et al., 2017; Turan et al., 2018; Wang et al., 96 

2013b, 2008). Overall, the high expression of ICR typifies “hot”/immune active tumors 97 
characterized by the presence of a T helper 1 (Th-1)/cytotoxic immune response, as described 98 

in detail elsewhere (Bertucci et al., 2018; Galon et al., 2013; Hendrickx et al., 2017; Turan et 99 
al., 2018). 100 

Previously, we observed a significantly prolonged survival of patients with tumors 101 

displaying a coordinated expression of ICR genes in breast cancer (Bertucci et al., 2018; 102 
Hendrickx et al., 2017). Moreover, we identified genetic determinants of different immune 103 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/546069doi: bioRxiv preprint first posted online Feb. 12, 2019; 

http://dx.doi.org/10.1101/546069


phenotypes (Hendrickx et al., 2017). In particular, we reported that transcriptional 104 

dysregulation of the MAPK pathways  sustained by genetic alterations (i.e., MAP3K1 and 105 
MAP2K4 mutations) are enriched in immune silent tumors (Hendrickx et al., 2017). We also 106 

observed that the ICR signature refines and improves the prognostic value of conventional 107 

prognostic signatures adopted in breast cancer (Bertucci et al., 2018). Here, we propose a 108 
systematic analysis of the entire TCGA cohort encompassing 31 different histologies. Using a 109 

pan-cancer approach, we identified novel relationships between tumor genetic programs and 110 

immune orientation. After having demonstrated differential associations between ICR 111 
classification and overall survival across cancer types, we systemically analyzed in which 112 

(molecular) contexts ICR has prognostic value and in which ones it does not. Combination of 113 

immune orientation with tumor intrinsic attributes that interact with its prognostic significance 114 
could refine tumor immunologic classifications. This approach was validated in the context of 115 

immune-checkpoint inhibition allowing better predictive precision.  116 
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Results 117 

Prognostic impact of ICR classification is different between cancer types 118 
RNA-seq data of samples from a total of 9,282 patients across 31 distinct solid cancer 119 

types were obtained from TCGA. To classify cancer samples based on their immune 120 

orientation, we performed unsupervised consensus clustering for each cancer type separately 121 
based on the expression of the ICR immune gene signature. This signature consists of 20 122 

genes that reflect activation of Th1-signaling (IFNG, TXB21, CD8B, CD8A, IL12B, STAT1, and 123 

IRF1), CXCR3/CCR5 chemokine ligands (CXCL9, CXCL10, and CCL5), cytotoxic effector 124 
molecules (GNLY, PRF1, GZMA, GZMB, and GZMH) and compensatory immune regulators 125 

(CD274/PD-L1, PDCD1, CTLA4, FOXP3, and IDO1) (Figure 1A) (Bedognetti et al., 2016; 126 

Galon et al., 2013; Hendrickx et al., 2017; Turan et al., 2018). Expression of these genes 127 
showed a positive correlation with each other across all cancer types (Supplementary Figure 128 

1). The ICR signature highly correlates with other immune signatures that aim to reflect a 129 

highly active immune tumor microenvironment, including the Tumor Inflammation Signatures 130 
(TIS) (r = 0.97)(Danaher et al., 2018) (Supplementary Figure 2). As a representative 131 
example, consensus clustering and cluster assignment of skin cutaneous melanoma (SKCM) 132 
is shown in Figure 1A. Analogous figures for each of the 31 cancer types are available as 133 
cancer datasheets at figshare.com.  134 

As shown in Figure 1B, the mean expression of ICR genes, or ICR score, varies 135 
between cancer types, reflecting general differences in tumor immunogenicity between 136 
cancers. While brain tumors (brain lower grade glioma’s (LGG) and glioblastoma multiforme 137 
(GBM)) typically display low immunological signals (McGranahan et al., 2017), skin cutaneous 138 

melanoma (SKCM) and head and neck squamous cell carcinoma (HNSC) display high levels 139 
of immune activation (Economopoulou et al., 2016; Passarelli et al., 2017; Thorsson et al., 140 
2018). In addition, the distribution of ICR scores among patients and the difference between 141 

the highest and lowest ICR scores varies between cancers. Accordingly, the proportions of 142 
patients assigned to specific ICR clusters are dependent on the cancer type. Even more 143 

clinically relevant, the relation of the different immune phenotypes to survival is dissimilar 144 

among cancer types (Figure 1C-D). While the ICR High phenotype (hot) shows a significant 145 
survival benefit compared with the ICR Low phenotype (cold) for various cancer types (BRCA, 146 

SKCM, UCEC, SARC), the ICR High cluster is associated with significantly reduced overall 147 
survival in other cancer types (UVM, LGG, PAAD, KIRC) (Figure 1C). Similar results were 148 

obtained when Cox regression analysis was performed on ICR score as a continuous variable 149 
(Supplementary Table 1). To explore biological differences between cancer types in which a 150 

highly active immune phenotype is mostly associated with favorable survival and cancer types 151 

in which this phenotype is mostly associated with decreased survival, we categorized cancer 152 
types in ICR-enabled (BRCA, SKCM, UCEC, SARC, LIHC, HNSC, STAD, BLCA) and ICR-153 
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disabled (UVM, LGG, PAAD, KIRC) groups, respectively (Figure 1C). All other cancer types 154 

in which ICR did not show an association or trend were categorized as ICR-neutral. Of 155 
important note, this classification was used for explorative purposes, a role of the immune 156 

mediated tumor rejection cannot be precluded in ICR-neutral cancer types.   157 

First, we explored whether the ICR scores and their distributions were different among 158 
these defined groups of cancer types. Mean ICR score is low for most ICR-disabled (ranging 159 

from 3.97 to 8.34) compared to ICR-enabled cancer types (ranging from 7.26 to 8.36) 160 

(Supplementary Figure 3A). This observation is most noticeable for ICR-disabled cancer 161 
types LGG and UVM. Moreover, the difference (delta) between ICR scores in ICR High 162 

compared to ICR Low groups is higher in ICR-enabled cancer types (range: 2.98-4.97) 163 

compared to ICR-neutral (range: 1.48-4.49) and ICR-disabled cancer types (range: 2.29-3.35) 164 
(Supplementary Figure 3B). These factors could underlie, at least partially, the observed 165 

divergent associations with survival.  166 

 To define whether tumor pathologic stage might interact with the association between 167 
ICR and overall survival (OS), we fitted a Cox proportional hazards model for each group of 168 
ICR-enabled, ICR-neutral and ICR-disabled cancer types (Table 1). Overall, including ICR 169 
High and ICR Low samples from all cancer types, ICR has significant prognostic value 170 
independent of AJCC pathologic stage. For ICR-enabled cancer types, the ICR High group 171 

also remains significantly associated with improved survival after adjusting for tumor 172 
pathologic stage. For ICR-disabled cancer types, ICR High was associated with worse survival 173 
in univariate analysis (HR <1). However, in multivariate models this negative prognostic value 174 
of ICR was lost (HR=1.054; 95% CI= 0.7702- 1.443). Kaplan-Meier plots stratified by 175 

pathologic stage showed that within individual pathologic stages, ICR was not associated with 176 
OS for ICR-disabled cancers (Supplementary Figure 4.1).  In fact, in the ICR-disabled tumors 177 
(but not in the ICR-enabled ones), ICR was significantly higher (p = 10 e-7) in advanced vs 178 

early stages (Supplementary Figure 4.2). Similarly, a progressive enrichment of ICR high 179 
samples was observed with more advanced stages in the ICR-disables tumors UVM and 180 

KIRC, and, in, LGG with more advanced grades. 181 

For ICR-neutral cancer types, while ICR was not associated with survival in univariate 182 
analysis, multivariate analysis indeed identified a positive prognostic value of the ICR 183 

classification, though less robust than observed for ICR-enabled cancer types.184 
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Table 1. Cox proportional hazards regression for association with overall survival in 186 
ICR-enabled and ICR-disabled tumors: ICR High and ICR Low samples included 187 
(ICR Medium samples excluded). 188 
 189 
 190 
 191 

Signif. codes: *** <0.001; ** <0.01; * <0.05 192 
 193 
ICR cluster entered as categorical (factor) variable (factor levels: “ICR High”, “ICR Low”) 194 
Pathologic stage as semi-continuous variable (Stage I = 1; Stage II = 2; Stage III = 3; Stage IV = 4) 195 
LGG and GBM were not included, as tumor stage is not available (not applicable) for these cancer 196 
types.  197 

 Univariable   Multivariable  
Variables HR (95% CI) p  HR (95% CI) p 
ICR overall (n = 4735)      

~ ICR cluster  
(ICR Low vs. High) 

1.203 (1.081-	
1.339)  

0.00073 
*** 

 1.343 (1.180- 1.528) 7.85e-06 
*** 

~ Pathologic stage  
(Stage I, II, III, IV) 

1.72 (1.615-		
1.832) 

<2e-16 
*** 

 1.716 (1.611- 1.827) <2e-16 
*** 

      
Samples from ICR-enabled 
cancer types (n = 1742) 

     

~ ICR cluster  
(ICR Low vs. High) 

1.631(1.374- 	
1.937)  

2.26e-8 
*** 

 1.488 (1.233- 1.795) 3.35e-05 
*** 

~ Pathologic stage  
(Stage I, II, III, IV) 

1.817 (1.644- 		
2.008) 

<2e-16 
*** 

 1.798 (1.628- 1.987) <2e-16 
*** 

      
Samples from ICR-disabled 
cancer types (n = 721) 

     

~ ICR cluster  
(ICR Low vs. High) 

0.6194 (0.4801- 	
0.7992) 

0.000229 
*** 

 1.054 (0.7702- 1.443) 0.742 

~ Pathologic stage  
(Stage I, II, III, IV) 

1.55 (1.351- 	
1.778) 

4.22e-10 
*** 

 1.560 (1.3520- 1.801) 1.19e-9 
*** 

      
Samples from ICR neutral cancer 
types (n = 2272) 

     

~ ICR cluster  
(ICR Low vs. High) 

1.160 (0.983- 	
1.369) 

0.0789  1.336 (1.065- 1.676) 0.0122 * 

~ Pathologic stage  
(Stage I, II, III, IV) 

1.665 (1.5- 	
1.848) 

<2e-16 
*** 

 1.640 (1.477- 1.821) <2e-16 
*** 
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ICR reflects anti-tumor immune activity and is inversely correlated with tumor-related 198 

pathways associated with immune escape 199 
 To further explore differences between cancer types, we aimed to compare the density 200 

of leukocyte subpopulations between ICR High and Low samples across cancers. Gene 201 

expression signatures specific to 24 cell types (Bindea et al., 2013) were used to deconvolute 202 
the abundance of immune cells in tumor samples by performing single sample gene set 203 

enrichment analysis (ssGSEA) (Barbie et al., 2009). Cell-specific enrichment scores (ES) for 204 

each patient demonstrated a clear enrichment of transcripts specific to T- and B cells in ICR 205 
High patients (Figure 2A). More specifically, ICR High samples showed increased expression 206 

of transcripts associated with cytotoxic T cells, T-regulatory (T-reg) cells, Th1 cells, NK 207 

CD56dim cells, activated dendritic cells (aDC) and macrophages, compared with ICR Medium 208 
and ICR Low samples. This observation is consistent across cancer types, in both ICR-209 

enabled and ICR-disabled cancers. So, in addition to the immune functional molecular 210 

orientation, the ICR gene signature is a good reflection of anti-tumor immune cell infiltration 211 
(Lu et al., 2017). To quantitatively compare immune cell enrichment between individual cancer 212 
types, the mean ES was calculated for each cancer type (Supplementary Figure 5). Overall, 213 
no single consistent difference in terms of immune cell enrichment can be observed that can 214 
discriminate ICR-enabled from ICR-disabled cancer types. LGG and UVM show an overall 215 

low immune infiltration, consistent with our reported low ICR scores. 216 
We then proceeded to examine which tumor intrinsic attributes correlate with immune 217 

phenotype as reflected by ICR gene expression. We performed ssGSEA to identify enrichment 218 
of transcripts of common tumor-related pathways (Hendrickx et al., 2017; Lu et al., 2017; 219 

Salerno et al., 2016). Not surprisingly, immune-related pathways including TNFR1 Signaling 220 
and immunogenic cell death showed a strong positive correlation with expression of ICR 221 
genes (Figure 2B). This implies that our immune signature captures the anti-tumoral 222 

immunological processes well across a wide range of cancer types. Interestingly, few 223 
pathways were identified that inversely correlated with ICR gene expression, potentially 224 

representing mechanisms by which immune silent tumors develop their phenotype. These 225 

pathways include WNT-b catenin (Corrales et al., 2017; Spranger and Gajewski, 2015), barrier 226 

genes (Salerno et al., 2016), AMPK signaling (Dandapani and Hardie, 2013), mismatch repair, 227 
telomerase extension by telomerase, Notch, and Hedgehog, signaling pathways. Of special 228 

note, genes that we previously found to be upregulated in MAP3K1/MAP2K4-mutated vs wild-229 

type (wt) breast cancer which perfectly segregated ICR High versus Low samples in the BRCA 230 
TCGA cohort (MAPK-up genes) (Hendrickx et al., 2017), were also inversely correlated with 231 

ICR in  a significant proportion of cancers (i.e, ACC, THYM, GBM, LGG and TGCT).  232 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/546069doi: bioRxiv preprint first posted online Feb. 12, 2019; 

http://dx.doi.org/10.1101/546069


  233 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/546069doi: bioRxiv preprint first posted online Feb. 12, 2019; 

http://dx.doi.org/10.1101/546069


Characterization of tumor mutational load and aneuploidy in relation to ICR immune 234 

phenotypes 235 
 Next, we aimed to identify genomic attributes related to the ICR immune phenotypes.  236 

As previously observed (Thorsson et al., 2018), mean neoantigen count of each cancer type 237 

strongly correlated with mean mutation rate (Supplementary Figure 6A-B). While mean non-238 
silent mutation rate was significantly higher in ICR High tumors for some cancer types, no 239 

clear association was observed in most of them.  Results for predicted neoantigen load were 240 

similar (Figure 3A-B and Supplementary Figure 6C-D). Overall, mean non-silent mutation 241 
rate and mean neoantigen load were higher in ICR-enabled cancers compared with ICR-242 

disabled cancers. However, these differences cannot fully explain the divergent association 243 

of ICR with survival, as values for ICR-enabled cancers SARC and BRCA are in the same 244 
range as ICR-disabled cancers LGG, PAAD and KIRC. 245 

 Similarly, we studied the association between genomic instabilities, or aneuploidy, and 246 

ICR. Specifically, we compared the individual tumor aneuploidy scores and the ICR score 247 
across cohorts. Aneuploidy score was calculated as in Taylor et al (Taylor et al., 2018). As 248 
has been reported previously, we found a broad negative association between aneuploidy and 249 
raw or tumor purity adjusted ICR score (Davoli et al., 2017) (Figure 3C). Interestingly, this 250 
negative association was most strongly supported in ICR-enabled cancers, with 6 cancers out 251 

of 8 showing a significant negative association between aneuploidy score and purity adjusted 252 
ICR (P < 0.01). In ICR-neutral cancers, a small fraction of cancer types showed a negative 253 
association (4 of 18, with an additional 4 showing a non-significant but suggestive negative 254 
association). Three cohorts (GBM, KICH and PRAD) showed a suggestive positive 255 

association. Similarly, in the ICR-disabled cohorts only KIRC showed a significant negative 256 
association, while LGG showed a strongly significant positive association (p-value < 10-8).   257 
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Specific mutations associate with ICR immune phenotypes 259 

To define the association of specific oncogenic mutations with ICR immune 260 
phenotypes, we first selected a set of  470 frequently mutated  genes in cancer (Iorio et al., 261 

2016), then trained an elastic net (Zou and Hastie, 2005) model to predict the ICR score as 262 

function of mutations in each sample and using the tumor-type as covariate. The positive non-263 
zero coefficients of the trained model were used to identify genes whose mutation are 264 

associated with an increase of the ICR and negative non-zero coefficients identify the genes 265 

whose mutations are associated to a decrease of the ICR score (Figure 4A). The use of 266 
tumor-type as covariate tends to limit the effect of the enrichment of mutations in specific 267 

cancer-types and their correlation with ICR score. The coefficients of the tumor-type were all 268 

different from zero, with the exception of BLCA, BRCA, CHOL, COAD, READ and SARC and 269 
retained in the final model. We evaluated the accuracy of the model in a ten-fold cross-270 

validation computing the correlation between the model prediction and the true ICR scores 271 

and obtaining a Spearman correlation of 0.669 ± 0.012 (p-value < 10-400). Genes associated 272 
with a decrease of ICR score include: FOXA2, NSD1, PSIP1, HDAC3, ZNF814, FRG1, 273 
SOX17, CARM1, GATA3, FKBP5, FGFR3, MAT2A, PPP2R5A, MECOM, SMAD2, MED17, 274 
WNT5A, KRAS, ADAM10, PRKAR1A, DIS3, PRRX1, MFNG, TNPO1, SPOP, KDM6A, EGFR, 275 
IRF7, NRAS, SUZ12, RPSAP58, and SF3B1. 276 

Interestingly MAP3K1 mutations, whose effect on ICR Low has been described in 277 
breast cancer (Hendrickx et al., 2017), were also associated to ICR Low tumors pan-cancer. 278 
The top genes of which mutations positively correlate with ICR reflect immune-evasion 279 
mechanisms that follow immunologic pressure such as mutations of antigen-presenting 280 

machinery transcripts previously described (i.e., B2M, HLA-A, HLA-B, and CASP8)(Rooney 281 
et al., 2015). 282 

To better compare the association between specific mutations and ICR groups within 283 

individual cancer types, we calculated, for each of the identified genes, the mean ICR score 284 
in the mutated group divided by the mean ICR score in the wild type (WT) within each 285 

individual cancer type. For most cancer types, the genes with a positive coefficient consistently 286 

showed a higher ICR score in mutated samples, supporting their association with an ICR High 287 
phenotype (Figure 4B). On the other hand, genes with a negative coefficient (genes 288 

associated with an ICR Low phenotype) as identified at the pan-cancer level, do show some 289 
clear deviations between cancer types. While for most cancer types, ICR score is indeed lower 290 

in the mutated group, results for cancer types COAD, UCEC and STAD show the reverse 291 
(Figure 4B). Interestingly, a common characteristic of these three cancer types is frequent 292 

hypermutation as a consequence of microsatellite instability (MSI) (Cortes-Ciriano et al., 293 

2017). This hypermutator phenotype could be responsible for the observed increased ICR 294 
score in the mutated group, as the genes with negative coefficient could be mutated in the 295 
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context of hypermutation. We indeed observed an increased ICR score in the MSI-high group 296 

compared to MSI-low and microsatellite stable (MSS) groups in COAD and STAD datasets 297 
for which sufficient data on MSI status were available (Cortes-Ciriano et al., 2017) 298 

(Supplementary Figure 7A-B).  299 

Mutated genes were frequently part of multiple pathways, suggesting impact on 300 
various tumor biological systems (Supplementary Figure 8).  301 
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Prognostic impact of ICR classification is dependent on the expression of cancer-related 303 
pathways 304 
 Although we observed interesting differences between ICR High and ICR Low immune 305 

phenotypes across different cancer types, these do not explain the divergent association 306 

between immune phenotype and survival as we observed in ICR-enabled versus ICR-disabled 307 

cancer types (Figure 1C-D). As previously stated, an active immune phenotype has different 308 

impacts on survival depending on molecular subtype (for e.g. breast cancer (Miller et al., 309 
2016)). To examine tumor intrinsic differences between ICR-enabled and ICR-disabled cancer 310 

types, we compared the enrichment of tumor intrinsic pathways between these two groups. 311 

Differentially enriched pathways (t-test; FDR <0.05; Supplementary Table 2) between ICR-312 
enabled and disabled cancer types were selected and used for pan-cancer hierarchical 313 

clustering. Interestingly, a wide variety of pathways were differentially enriched between both 314 

groups. Whereas enrichment for pathways involved in proliferation were mostly upregulated 315 

in ICR-enabled cancer types (proliferation metagene (Miller et al., 2016), E2F targets, G2M 316 

checkpoints and mismatch repair), a large number of tumor intrinsic pathways (n=43) were 317 
enriched in ICR-disabled cancer types. Visualization of ES for these pathways across different 318 
cancer types in a heatmap confirms these findings. Hierarchical clustering based on ES of 319 

tumor intrinsic pathways differentially dysregulated by ICR-enabled and ICR-disabled cancer 320 
types segregates specimens into two main clusters (Figure 5A). As anticipated, pan-cancer 321 
survival analysis of all samples that formed a cluster along with samples of the ICR-disabled 322 
cancer types, named the ICR non-beneficial cluster, revealed no survival benefit of a high ICR 323 

expression. On the other hand, survival analysis of all samples in the other cluster, named the 324 
ICR beneficial cluster, showed a clear survival benefit for ICR High samples (Figure 5B). Of 325 
note, the prognostic significance of ICR was higher in this ICR beneficial cluster (HR = 1.82; 326 
p-value = 4.13-9; 95% CI = 1.49-2.23) compared to the prognostic significance of all samples 327 

of ICR-enabled cancer types combined (HR = 1.63, p = 2.26-8; 95% CI = 0.88-1.14), 328 

suggesting that tumor intrinsic attributes beyond the tumor site of origin are important to 329 
determine the relevance of cancer immune phenotypes. Interestingly, samples from ICR-330 

neutral cancers, in which no clear trend was observed between ICR and survival (Figure 1C), 331 

and which were not used in calculation of differentially enriched pathways, were divided across 332 
the ICR beneficial and ICR non-beneficial clusters. To evaluate whether the prognostic impact 333 

of the ICR was relevant to a subset of samples from ICR-neutral cancer types, subgroup 334 

analysis was performed for samples of ICR-neutral cancer types. Indeed, for all samples from 335 
ICR-neutral cancer types that clustered to the ICR non-beneficial cluster, ICR was not 336 

associated with survival. On the other hand, for samples of ICR-neutral cancer types which 337 

clustered to the ICR beneficial cluster, ICR showed a significant positive association with 338 
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survival (Figure 5C), indicating that the ICR has prognostic relevance in this subgroup of 339 

cancer patients as well.  340 
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To better clarify this concept, we selected two of the differentially expressed pathways 343 

that were of special interest. Firstly, the “Proliferation” signature was used to classify all 344 
samples independent of tumor origin in “Proliferation High” and “Proliferation Low” categories, 345 

defined as an ES value >median or <median of all samples, respectively. This 52-gene cluster 346 

described by Nagalla et al (Nagalla et al., 2013) has previously been associated with the 347 
prognostic value of immune gene signatures in breast cancer (Miller et al., 2016). As 348 

represented by a histogram, the proportion of samples with high proliferation signature 349 

enrichment was larger in ICR-enabled cancer types compared with ICR-disabled cancers 350 
(Figure 6A). This very basic binary classification was already capable of segregating samples 351 

in a group in which ICR has a positive prognostic value from a group in which ICR is not 352 

associated with survival (Figure 6B). As a second illustration, “TGF-ß signaling” was used to 353 
classify samples based on this pathway using the same approach. For this oncogenic 354 

pathway, ICR-enabled cancer types typically had a lower enrichment of this pathway 355 

compared to ICR-disabled cancer types (Figure 6C). This classification could also divide 356 
samples in a group in which ICR has a positive association with survival and a group in which 357 
this association is absent (Figure 6D). 358 

As proliferation positively correlates with tumor mutational load (Pearson’s correlation 359 
coefficient = 0.49) (Supplementary Figure 9), we investigated whether tumor proliferation 360 

independently contributes to the prognostic value of ICR. Therefore, we segregated pan-361 
cancer samples in four categories based on both mutation rate and proliferation 362 
(Supplementary Figure 10). Interestingly, in the proliferation high group, ICR High was 363 
associated with significantly improved survival independent of mutation rate. A similar 364 

observation is made for the mutation rate high group, ICR High is associated with better 365 
survival independent of proliferation. These finding suggest that mutation rate and enrichment 366 
of proliferation-related transcripts provide additive information to define the prognostic value 367 

of ICR. Furthermore, in a multivariate Cox proportional hazards model including ICR 368 
classification, proliferation enrichment, TGF-ß signaling enrichment, and tumor mutation rate, 369 

all parameters remain significant (Supplementary Figure 11). This implies that ICR, 370 

proliferation rate, TGF-ß signaling and tumor mutation rate all have independent prognostic 371 
value. 372 

We then continued by verifying whether these tumor intrinsic attributes that interact 373 
with the prognostic impact of ICR when evaluated pan-cancer, could also translate to 374 

individual cancer types. For each individual cancer type, samples were divided by median ES 375 
for each of the selected pathways. ICR HRs (ICR Low vs. ICR High) were compared between 376 

each pathway-High and pathway-Low group for each cancer type (Supplementary Figure 377 

S12A-B). Overall, we indeed observed an increased HR for samples with a high enrichment 378 
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of ICR enabling pathways for most cancer types. For samples with a high enrichment of ICR 379 

disabling pathways, the HR was indeed lower (Supplementary Figure S12C).  380 
These data confirm an association between the prognostic impact of ICR classification 381 

and enrichment of oncogenic pathways in individual cancer types as well as pan-cancer. Of 382 

note, these interactions between the prognostic significance of ICR and tumor intrinsic 383 
pathways were mostly present in enabled and neutral cancer types. Within disabled cancer 384 

types, with the exception of KIRC, similar associations were not found.  385 
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Predictive value of ICR score in immune checkpoint therapy is dependent on proliferation and 387 

TGF-ß signaling 388 
To define the clinical relevance of classification of ICR immune phenotypes, in the 389 

setting of immune checkpoint treatment, we first evaluated the predictive value of ICR score 390 

across multiple public datasets of anti-CTLA4 and anti-PD1 treatment. A significantly 391 
increased expression of ICR in responders compared to non-responders was observed across 392 

most of the datasets (Figure 7A) (Chen et al., 2016; Hugo et al., 2016; Prat et al., 2017; Riaz 393 

et al., 2017; Van Allen et al., 2015). The conditional activation of the prognostic impact of the 394 
ICR was tested in the Van Allen dataset, which was the only one for which survival information 395 

was available. Strikingly, in the proliferation high subgroup, ICR score was significantly higher 396 

in pre-treatment samples of patients with long-survival or response (p=0.021), whereas this 397 
difference was not significant in proliferation low samples (Figure 7B). Cohort dichotomization 398 

based on TGF-ß signaling, again demonstrated the reverse trend: a significant difference in 399 

ICR score was only observed in the TGF-ß signaling low group (p=0.0044), not in the TGF-ß 400 
high group. Stratified survival analysis in these categories confirmed that the prognostic 401 
impact of ICR depends on proliferation and TGF-ß signaling (Figure 7C). These findings 402 
confirm a conditional prognostic and predictive impact of ICR based immune infiltration 403 
estimates in the setting of immune checkpoint treatment and demonstrate that these findings 404 

might have important clinical implications.  405 
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Materials and Methods 408 

 409 
Data acquisition and normalization 410 

RNA-seq data from The Cancer Genome Atlas (TCGA) were downloaded and processed 411 

using TCGA Assembler (v2.0.3). Gene symbols were converted to official HGNC gene 412 
symbols and genes without symbol or gene information were excluded. RNA-seq data from 413 

as wide as possible sample set of the total of 33 available cancer types of tissue types Primary 414 

Solid Tumor (TP), Recurrent Solid Tumor (TR), Additional-New Primary (TAP), Metastatic 415 
(TM), Additional Metastatic (TAM) and Solid Tissue Normal (NT) were used to generate a pan-416 

cancer normalized dataset. Normalization was performed within lanes, to correct for gene-417 

specific effects (including GC-content and gene length) and between lanes, to correct for 418 
sample-related differences (including sequencing depth) using R package EDASeq (v2.12.0) 419 

and quantile normalized using preprocessCore (v1.36.0). After normalization, samples were 420 

extracted to obtain a single primary tumor tissue (TP) sample per patient. For SKCM patients 421 
without available TP sample, a metastatic sample (TM) was included. Finally, the pan-cancer 422 
normalized dataset was filtered to remove duplicate patients and samples that did not pass 423 
assay-specific QCs (Thorsson et al., 2018) data was log2 transformed. Clinical data were 424 
sourced from the TCGA Pan-Cancer Clinical Data Resource (Liu et al., 2018). Mutation rate 425 

and predicted neoantigen load were obtained from the recent immunogenomic analysis by 426 
Thorsson et al (Thorsson et al., 2018). The dataset published by Ellrott et al was used for 427 
mutation data analysis(Ellrott et al., 2018). Hematological cancer types LAML and DLBC were 428 
excluded from analysis. 429 

Raw fastq files of datasets GSE78220 (Hugo et al., 2016) and GSE78220 (Riaz et al., 430 
2017) were downloaded from NCBI SRA servers, quality control and adapter trimming was 431 
performed  using Trim_Galore (https://github.com/FelixKrueger/TrimGalore). Reads were 432 

aligned to hg19 using STAR (Dobin et al., 2013). GenomicFeatures and GenomicAlignments 433 
Bioconductor packages were used to generate row counts. The raw counts were normalized 434 

with EDASeq (Risso et al., 2011) and log2 transformed. The dataset phs000452.v2.p1 (Van 435 

Allen et al., 2015) was downloaded, already normalized, from http://tide.dfci.harvard.edu/. 436 
 437 

ICR classification 438 
Consensus clustering based on the 20 ICR genes (Figure 1A) was performed for each cancer 439 

type separately using the ConsensusClusterPlus (v1.42.0) R package with the following 440 
parameters: 5,000 repeats, a maximum of six clusters, and agglomerative hierarchical 441 

clustering with ward criterion (Ward.D2) inner and complete outer linkage. The optimal number 442 

of clusters (≥ 3) for best segregation of samples based on the ICR signature was determined 443 

heuristically using the Calinski-Harabasz criterion(Caliński and Harabasz, 1974) (source 444 
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function available on GitHub repository, see cancer datasheets for plots with local maximum). 445 

As we were interested to compare cancer samples with a highly active immune phenotype 446 
with those that have not, the cluster with the highest expression of ICR genes was designated 447 

as “ICR High”, while the cluster with the lowest ICR gene expression was designated “ICR 448 

Low”. All samples in intermediate cluster(s) were defined as “ICR Medium”. Samples were 449 
annotated with an ICR score, defined as the mean of the normalized, log2 transformed 450 

expression values of the ICR genes. For generation of the ICR Heatmaps (Figure 1C and the 451 

cancer datasheets), a modified version of heatmap.3 function was used (source function).  452 
 453 

Survival analysis 454 

Overall survival (OS) from the TCGA Pan-Cancer Clinical Data Resource (Liu et al., 2018) 455 
was used to generate Kaplan-Meier curves using a modified version of the ggkm function 456 

(Abhijit, n.d.). Patients with less than one day of follow-up were excluded and survival data 457 

were censored after a follow-up duration of 10 years. Hazard ratios (HR) between ICR Low 458 
and ICR High groups, including corresponding p-values based on chi-squared test, and 459 
confidence interval were calculated using the R package survival (v2.41-3). The forest plot 460 
(Figure 1C) was generated using the R package forestplot (v1.7.2). Cancer types PCPG, 461 
THYM, TGCT, and KICH were excluded before generation of the plot, as the number of deaths 462 

in the comparison groups was too small for calculations. Cancer types with a HR > 1 with a p-463 
value < 0.1 were termed ICR-enabled and cancer types with a HR < 1 with a p-value < 0.1 464 
were termed ICR-disabled. The forest plot was annotated manually with indicators for ICR-465 
enabled and ICR-disabled cancer types. Cox proportional hazards regression analysis was 466 

performed with the R package survival with the AJCC pathologic tumor stage as described in 467 
the TCGA Pan-Cancer Clinical Data Resource (Liu et al., 2018). For simplification, stage 468 
categories were reduced to “Stage I”, “Stage II”, “Stage III” and “Stage IV” for subcategories 469 

(e.g. Stage IIA, Stage IIB, Stage IIC etc). In multivariate analysis, pathologic stage was entered 470 
as a semi-continuous (ordinal) variable. Cancer types LGG and GBM were not included in the 471 

multivariate analysis as tumor stage is unavailable (not applicable) for these histologies. 472 

 473 
Gene Set Enrichment Analysis 474 

To define the enrichment of specific gene sets, either reflecting immune cell types (Figure 2A) 475 
or specific oncogenic pathways (Figure 2B), single sample GSEA (Barbie et al., 2009) was 476 

performed on the log2 transformed, normalized expression data. Immune cell-specific 477 
signatures as described in Bindea et al (Bindea et al., 2013) were used as gene sets using 478 

this method to deconvolute immune cell abundance. Gene sets to define enrichment of 479 

specific tumor-related pathways were obtained from the multiple sources. We started with a 480 
selection of 24 Hallmark pathways (Liberzon et al., 2015) which are regularly expressed in 481 
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cancer. Subsequently, we added 21 non-redundant Ingenuity Pathway Analysis (IPA) 482 

pathways (http://www.ingenuity.com, Ingenuity System Inc., Redwood City, CA, USA). Finally, 483 
several pathways were added that have previously been hypothesized to associate with 484 

cancer immune phenotypes, including Hypoxia/Adenosine Immune Cell Suppression, 485 

Immunogenic Cell Death (ICD), NOS1 Signature, PI3Kgamma signature, and SHC1/pSTAT3 486 
signatures as described by Lu et al (Lu et al., 2017), barrier genes as described by Salerno et 487 

al (Salerno et al., 2016), the proliferation metagene as described by Miller et al (Miller et al., 488 

2016) and genes upregulated in MAPK mutated breast cancer (Bedognetti et al., 2017). 489 
 490 

Correlation matrix 491 

The correlation matrices of ICR genes (Supplementary Figure 1) and correlation between 492 
ICR score and ES of selected pathways (Figure 2B) were calculated using Pearson test and 493 

plotted using “corrplot” version 0.84. 494 

 495 
Mutational Analysis 496 
Mutation rate and predicted neoantigen count data (Thorsson et al., 2018) were log10-497 
transformed and distribution across ICR clusters was plotted using R package “ggplot2”. 498 
Differences between ICR High, Medium and Low clusters were calculated through t-test, using 499 

a cut-off p-value of < 0.05. For specific mutation analysis, a set of 470 frequently mutated 500 
genes in cancer (Iorio et al., 2016), was selected. An elastic net regularized (Zou and Hastie, 501 
2005) model was built to predict the ICR score as function of mutations in each sample and 502 
using the tumor-type as a covariate. The accuracy of the model was evaluated in a ten-fold 503 

cross-validation setting computing the correlation between the model prediction and the true 504 
ICR scores, finally obtaining a Spearman correlation of 0.669 ± 0.012 (p-value < 10-400).  505 
 The R package “ComplexHeatmap” was used to plot ICR score ratios between 506 

mutated versus wild-type groups. For cancer type/ gene combinations with a number of 507 
samples of <3 in the mutated group, ratios were not calculated (NA; grey color in plot). A ratio 508 

>1 implies that the ICR score is higher in the mutated group compared with WT, while a ratio 509 

<1 implies that the ICR score is higher in subset of tumors without mutation. 510 
 511 

Aneuploidy 512 
Aneuploidy scores for each individual cancer were taken from Taylor et al (Taylor et al., 2018). 513 

Briefly, each tumor was scored for the presence of aneuploid chromosome arms after 514 
accounting for tumor ploidy. Tumor aneuploidy scores for each cohort were then compared to 515 

ICR scores via linear model with and without purity adjustment. Purity adjustment entailed 516 

correlating ICR score and tumor purity (as estimated via ABSOLUTE) and using the residuals 517 
to evaluate the post-adjustment relationship between ICR score and tumor aneuploidy. In 518 
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particular we made use of the precomputed aneuploidy scores and ABSOLUTE tumor purity 519 

values. Raw ICR and aneuploidy score associations were evaluated by linear model in R via 520 
the lm() function for each cohort independently. Adjusted ICR and aneuploidy score 521 

associations were evaluated by first modeling ICR score by tumor purity, then taking the ICR 522 

score residuals and assessing the association with aneuploidy score via linear model. Cohorts 523 
with model p-values below 0.01 for adjusted or unadjusted ICR score and aneuploidy, 524 

regardless of the directionality of the association, were included in Figure 3C. 525 

 526 
Differential GSEA and stratified survival analysis 527 

Differential ES analysis between samples of ICR-enabled and those of ICR-disabled cancer 528 

types was performed using t-tests, with a cut-off of FDR-adjusted p-value (i.e., q-value) < 0.05 529 
(Supplementary Table 2). Tumor intrinsic pathways that were differentially enriched between 530 

ICR-enabled and disabled cancer types were selected. The heatmap used for visualization of 531 

these differences was generated using the adapted heatmap.3 function (source function). For 532 
each of these selected pathways, samples were categorized pan-cancer as pathway-High (ES 533 
> median ES) or pathway-Low (ES < median ES). Associations between ICR and survival 534 
were defined for each pathway “High” and pathway “Low” group separately using the survival 535 
analysis methodology as described above. Pathways for which a significant association 536 

between ICR and survival was present in one group, but not in the other one, were selected 537 
(Supplementary Table 3). Similarly, these pathways were used to categorize samples per 538 
individual cancer type in pathway-High (ES > cancer specific median ES) and pathway-Low 539 
(ES < cancer specific median ES). Differences between HRs of groups in individual cancer 540 

types were calculated and plotted using “ComplexHeatmap” (v1.17.1). 541 
 542 
Predictive value ICR score in immune checkpoint datasets 543 

ICR scores, or the mean expression of ICR genes, were compared between responders and 544 
non-responders to immune checkpoint therapy. For the Chen et al dataset, performed on 545 

Nanostring platform, scores were calculated using the 17 ICR genes available in the 546 

nanostring panel. Difference in mean ICR score between groups was tested using two-side t-547 
test (cutoff <0.95) (Fig 7A). For datasets, GSE78220 (Riaz et al., 2017), GSE78220 (Hugo et 548 

al., 2016) and Prat et al (Prat et al., 2017), the response category includes both partial and 549 
complete clinical responders according to respective publications. For Chen et al, clinical 550 

responders also included stable disease, as described by Chen et al (Chen et al., 2016). 551 
Dataset van Allen et al, response was defined as patients with clinical response or long-term 552 

survival after treatment (Van Allen et al., 2015). Samples of van Allen dataset were 553 

dichotomized based on median ssGSEA of 1) genes of the proliferation metagene and 2) TGF-554 
ß signaling signature. Stratified analysis was performed in each of the categories. ICR High, 555 
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Medium and Low groups were defined according to ICR score tertiles, to obtain groups of 556 

sufficient size. Stratified survival analysis was performed using the same approach as applied 557 
to the TCGA data. 558 

 559 

Discussion  560 
Transcriptional signatures used to define the continuum of cancer immune surveillance 561 

and the functional orientation of a protective anti-tumor immunity typically reflect common 562 

immune processes and include largely overlapping genes (Ayers et al., 2017; Hendrickx et 563 
al., 2017; Wang et al., 2008). We termed this signature as the ICR (Galon et al., 2013; Wang 564 

et al., 2008).  565 

In our systematic analysis we showed that, across and within different tumors, the 566 
coordinated overexpression of ICR identifies a microenvironment polarized toward a Th-567 

1/cytotoxic response, which was then used to define the hot/immune active tumors. 568 

In tumor types with medium/high mutational burden, the mutational or neoantigenic 569 
load tended to be higher in hot (ICR high) vs cold (ICR low) tumors while this association was 570 
not observed within cancer types with overall low mutational burden.  By adding granularity to 571 
previous observations that described an overall weak correlation between immunologic 572 
correlates of anti-tumor immune response and mutational load (Danaher et al., 2018; Ock et 573 

al., 2017; Rooney et al., 2015; Spranger et al., 2016; Thorsson et al., 2018), we demonstrated 574 
here that the differences in term of mutational load was especially evident in tumors types 575 
known to be constituted by a significant proportion of microsatellite instable cases, such as 576 
COAD, STAD and UCEC. It is likely that, in hypermutated tumors, the excess of neoantigens 577 

plays a major role in the immune recognition, while, in the other cases, additional mechanisms, 578 
such as cell-intrinsic features, play a major role in shaping the anti-tumor immune response 579 
(Hendrickx et al., 2017). Overall, a high mutational/neoantigen load was neither sufficient nor 580 

necessary for the displaying of an active immune microenvironment. 581 
When the ICR score was intersected with the enrichment of oncogenic signals as 582 

predicted by the transcriptional data, interesting associations emerged. Although some 583 

differences in terms of the degree of the correlation were observed across cancers, few tumor-584 
cell intrinsic pathways displayed a coherent progressive enrichment in the immune-silent 585 

tumors. The top pathways associated with the absence of the Th1/hot immune phenotype 586 
included, barriers genes, WNT-ß catenin, mismatch repair, telomerase extension by 587 

telomerase, Notch, Hedgehog, and AMPK signaling pathways. Barrier genes encode for 588 
molecules with mechanical barrier function in the skin and other tissues and include filaggrin 589 

(FLG), tumor-associated calcium signal transducer 2 (TACSTD2), desmosomal proteins 590 

(DST, DSC3, DSP, PPL, PKP3, and JUP) (Salerno et al., 2016). Their expression was 591 
associated with a T-cell excluded phenotype in melanoma and ovarian cancer, and here we 592 
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extended our previous observation across multiple tumors (Salerno et al., 2016). The cell-593 

intrinsic WNT-ß catenin activation impairs CCL4-mediated recruitment of Batf3 dendritic cells, 594 
followed by absence of CXCL10 mediated T-cell recruitment, and was described initially 595 

associated with T-cell exclusion in melanoma, and recently, in other tumor types (Luke et al., 596 

2019; Spranger et al., 2015). The efficiency of our approach in capturing previously described 597 
oncogenic pathways indicates the robustness of the analysis. At the same time, our integrative 598 

pipeline unveiled additional relevant pathways: telomere extension by telomerase and 599 

mismatch repair, Notch, Hedgehog and AMPK signaling. Our findings suggest that the lack of 600 
expression of transcripts involved with mismatch repair (in addition to their genetic integrity 601 

(Barnetson et al., 2006)) might influence immunogenicity. Telomere dysfunctions result in 602 

various disease, including cancer and inflammatory disease (Calado and Young, 2012). To 603 
our knowledge, this is the first time that telomerase activity has been linked to differential 604 

intratumor immune response. The Notch pathway can regulate several target genes controlled 605 

by the NFκB, TGF-β, mTORC2, PI3K, and HIF1α pathways (Janghorban et al., 2018) and is 606 
involved in the induction of cancer stem cells, but has not been described to be associated 607 
with differential intratumoral immune response so far.  As for the Hedgehog pathway, in breast 608 
cancer models, inhibition of this signaling induces a marked reduction in immune-suppressive 609 
innate and adaptive cells paralleled with an enrichment of cytotoxic immune cells (Hanna et 610 

al., 2019). Intriguingly, the AMPK pathway was the most coherently dysregulated pathway in 611 
relationship to the ICR score. In lung cancer mouse models, the deletion of LKB1 (an upstream 612 
modulator of AMPK pathway) was associated with decrease T cell tumor infiltration, and 613 
impaired production of pro-inflammatory cytokines, which was mediated by induction of 614 

STAT3 and IL-6 secretion (Koyama et al., 2016; Spranger and Gajewski, 2018). The strength 615 
of the inverse association between the AMPK pathway and ICR score strongly calls for in-616 
depth investigation of the immune-modulatory role of this pathway. Overall, we identified novel 617 

putative hierarchically relevant cancer-cell intrinsic pathways associated with immune evasion 618 
mechanisms in humans that might warrant further mechanistic investigations and that might 619 

be explored as targets for reprogramming the tumor microenvironment. The biological 620 

relevance here is substantiated by the consistency of the associations across tumor types, in 621 
which each cohort can be seen as an independent validation. The coherence of the 622 

associations rules out the possibility of a spurious correlation.   623 
As for somatic mutations, the top ten genes associated with the immune silent 624 

phenotype include IDH1, IDH2, FOXA2, NSD1, PSIP1, HDAC3, ZNF814, MAP3K1, FRG1 625 
and SOX17. Findings of IDH1 and NSD1 are consistent with the report of Thorsson et al 626 

(Thorsson et al., 2018), in which these have been associated with decreased leukocyte 627 

infiltration, and are complemented here by additional identification of IDH2. Interestingly, 628 
MAP3K1 mutations were  previously  associated with low ICR in breast cancer in our previous 629 
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work (Bedognetti et al., 2017; Hendrickx et al., 2017).  Remarkably, mutations of other genes 630 

of the RAS/MAPK pathways such as FGFR3 (previously associated with T-cell exclusion in 631 
bladder cancer (Sweis et al., 2016)), EGFR, NRAS, and KRAS were associated with a low 632 

ICR score, substantiating their potential role in mediating immune exclusion. FOXA2 is 633 

involved in both neoplastic transformation and epithelial-mesenchymal transition (Wang et al., 634 
2018, p. 2) and T helper differentiation (Chen et al., 2010) but its role in modulating anti-tumor 635 

immune response is unknown. Similarly, no data exists on the effect of HDAC3, PSIP1 and 636 

ZNF814 on tumor immunogenicity. Considering the strength of the association, further 637 
investigations should mechanistically address the role of these signaling pathways in 638 

mediating immune evasion mechanisms.  Other mutations associated with the immune silent 639 

phenotype include WNT5A (corroborating the immune-suppressive role of the WNT ß catenin 640 
pathway (Luke et al., 2019)), and GATA3, which was also previously associated with low 641 

leukocyte infiltration (Thorsson et al., 2018). Mutations of FKBP5, MAT2A, PPP2R5A, 642 

MECOM, SMAD2, MED17, ADAM10, PRKAR1A, DIS3, PRRX1, MFNG, TNPO1, KDM6A, 643 
IRF7, SUZ12, RPSAP58, and SF3B1 represent additional novel findings. Similar to previous 644 
observations, we found HLA-A, HLA-B, B2M, CASP8 and FAS to be associated with an ICR 645 
High immune phenotype (Ock et al., 2017; Rooney et al., 2015; Shukla et al., 2015; Siemers 646 
et al., 2017; Thorsson et al., 2018). These mutations are probably the result of immune escape 647 

mechanisms triggered by immunologic pressure. 648 
As for genomic instability, tumors with high aneuploidy are associated with decreased 649 

ICR score in a major subset of cancer types (Davoli et al., 2017). This observation is also in 650 
agreement with negative association of a chromosome-instable type with an immune 651 

signature that predicts response to immunotherapy with MAGE-A3 antigen as well as 652 
response to anti-CTLA-4 treatment in melanoma (Ock et al., 2017). The only exceptions we 653 
found were brain tumors LGG and GBM in which a positive association between aneuploidy 654 

and ICR score was detected. In LGG tumors, however, ICR scores positively correlate with 655 
tumor grade (Supplementary Figure 4), and it is possible that the observed positive 656 

correlation between aneuploidy and ICR is actually driven by the higher genomic instability 657 

characterizing the more advanced tumors. 658 
To compare cancer types based on the prognostic value of ICR, we categorized them 659 

into two groups: one for which ICR High was associated with increased OS and one for which 660 
ICR was associated with worse OS. For the first group, multivariate analysis confirmed a 661 

positive prognostic value of ICR independent of pathologic tumor stage. SKCM, BRCA, UCEC, 662 
LIHC, SARC, HNSC, STAD, and BLCA are consequently referred to as ICR-enabled cancer 663 

types. For the second group, including UVM, LGG, PAAD, and KIRC (ICR-disabled tumors), 664 

survival analysis showed a detrimental (univariate analysis) or neutral (multivariate analysis 665 
with stage) role of ICR.  666 
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 These discrepancies in term of prognostic implication of intratumoral immune 667 

response have been observed in independent investigations based on transcriptomic analysis 668 
(Chifman et al., 2016; Thorsson et al., 2018) or immunohistochemistry (Fridman et al., 2012) 669 

but never explained.  670 

The first notable difference we observed between ICR-enabled and -disabled cancer 671 
types was the overall lower ICR value in the disabled cancer cohorts. In particular for UVM 672 

and LGG, this low ICR could be a partial explanation for the lack of positive prognostic value 673 

of the ICR. On the other hand, mean ICR score of PAAD and KIRC was not different compared 674 
with the other cancer types. Therefore, other factors must have an effect on the prognostic 675 

value of the ICR. When we compared enrichment of tumor-cell intrinsic pathways in ICR-676 

enabled and -disabled cancer types, as much as 43 of 54 analyzed pathways showed 677 
differential enrichment between the two groups. While ICR-enabled cancer types are typically 678 

more enriched in proliferation-related signatures, ICR-disabled cancer types have high 679 

enrichment of pathways generally attributed to tumor signaling including known pathways 680 
associated with immune suppression such as TGF-ß (Chakravarthy et al., 2018). In fact, when 681 
samples of the entire cohort were segregated according to representative enabling and 682 
disabling pathways (i.e., proliferation and TGF-ß signaling, respectively), the prognostic role 683 
of ICR was restricted to proliferation high/TGF-ß signaling low tumors (Figure 6). Hierarchical 684 

clustering based on the enrichment of transcripts of these differentially enriched pathways 685 
segregated most samples of ICR-enabled cancer types from samples of ICR-disabled cancer 686 
types. Interestingly, this clustering was even relevant to samples of ICR neutral cancer types. 687 
The pan-cancer survival analysis of samples of ICR neutral cancer types showed that for 688 

samples that co-clustered with samples of ICR-enabled cancer types (the ICR beneficial 689 
cluster), ICR High was associated with significant prolonged survival. Conversely, in samples 690 
of ICR neutral cancer types clustered to the ICR non-beneficial cluster, ICR lost its prognostic 691 

value. Adding the mutational load component further refined this stratification. In fact, the 692 
positive prognostic role of ICR was present also in a subset of samples with low proliferation 693 

and high mutational load but absent only in tumors with both low proliferation and low 694 

mutational load. We hypothesize that, in tumor with high mutational burden and/or high 695 
proliferative capacity, the high level of ICR captures a true protective anti-tumoral immune 696 

response, while in the other cases, such as in tumors dominated by TGF-ß signaling and low 697 
proliferation, the high ICR captures a  bystander, or heavily suppressed, lymphocyte infiltration 698 

with no protective effect. Therefore, it is possible to speculate that a proportion of 699 
phenotypically immune active tumors are functionally immune silent. Single cell RNA 700 

sequencing, T-cell receptor sequencing, and spatial transcriptional analysis might be 701 

employed to characterize with higher fidelity the true functional orientation of human tumors.  702 
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The clinical relevance of the observed conditional impact of ICR was confirmed in the 703 

setting of anti-CTLA4 treatment, in which the predictive value of ICR was demonstrated to be 704 
dependent on tumor intrinsic pathways, such as TGF-ß and proliferation. To the best of our 705 

knowledge, we are the first to report an interaction between tumor intrinsic pathways and the 706 

prognostic value of immune phenotypes in a pan-cancer analysis. An association between 707 
proliferation and the prognostic value of immune phenotypes has previously been identified in 708 

breast cancer (Miller et al., 2016). In non-small cell lung cancer, proliferation was shown to 709 

improve prediction of immune checkpoint inhibitors response in PD-L1 positive samples (data 710 
recently presented at SITC annual meeting 2018 (“SITC 2018 Annual Meeting Schedule,” 711 

n.d.)). Our study clearly demonstrates that such interactions between tumor intrinsic attributes 712 

and prognostic and potentially predictive value of immune phenotypes are also relevant in a 713 
pan-cancer context. Moreover, we defined additional tumor intrinsic attributes beyond tumor 714 

proliferation to correlate with the prognostic significance of immune signatures reflecting a Th1 715 

immune response. Prognostication algorithms should be refined by inclusion of tumor intrinsic 716 
attributes in order to define the prognostic impact of the immune signatures. 717 

In conclusion, we observed a clear relationship between enrichment of tumor intrinsic 718 
pathways and the prognostic and predictive significance of the immune signatures and 719 
identified novel cell-intrinsic features associated with immune exclusion. This information can 720 

be used to prioritize candidates for immunogenic conversion and to refine stratification 721 
algorithms.  722 
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Figure Legends 1146 

 1147 
Figure 1:  Immunologic classification of 31 cancer types based on expression of ICR 1148 

gene signature A. Consensus cluster matrix of SKCM samples based on RNA-seq 1149 

expression values of ICR genes (left panel). RNA-seq expression heatmap of ICR genes 1150 
annotated with ICR consensus clusters (n = 469). Clusters with intermediate ICR gene 1151 

expression levels (ICR Medium1 and ICR Medium2) were combined to obtain ICR High, 1152 

Medium and Low groups (HML classification). ICR genes reflect 4 components of immune 1153 
mediated tissue rejection: Th1 signaling, CXCR3/CCR5 chemokines, immune effectors and 1154 

immune regulatory functions (right panel). B. Boxplot of ICR scores across ICR clusters in 1155 

31 cancer types. Cancer types are ordered by mean ICR score per cancer. C. Forest plot 1156 
showing HRs (overall survival) of ICR Low versus High, p-value and number of patients (N) 1157 

for each of the cancer types. ICR-enabled cancer types (HR  > 1; p < 0.1) are indicated with 1158 

orange asterisks and ICR-disabled cancer types (HR < 1; p > 0.1) are indicated with purple 1159 
asterisks. Cancer types PCPG, THYM and TGCT are excluded from the plot, because 1160 
confidence intervals ranged from 0 to infinite due to low number of deaths in these cancer 1161 
types. D. Kaplan Meier curves showing OS across two three different ICR groups in ICR-1162 
enabled and ICR-disabled cancer types. 1163 

(Figures of panel A and Kaplan Meier curves for each individual cancer type are available in 1164 
the cancer datasheets). 1165 
 1166 
Figure 2: Deconvolution of immune cell populations and enrichment of oncogenic 1167 

pathways through single sample GSEA. A. Heatmap of enrichment values for cell-specific 1168 
immune-signatures as described by Bindea et al. Samples are ordered by ICR cluster and 1169 
ordered by cancer type within ICR clusters. B. Pearson coefficient of correlation between 1170 

ICR score and enrichment scores of oncogenic pathways per cancer. Pathways that have a 1171 
positive correlation with ICR are green and those with an inverse correlation are blue. 1172 

 1173 

Figure 3: Association of ICR with nonsilent mutation rate, predicted neoantigen load, 1174 
and tumor aneuploidy. A. Scatter plot of log transformed nonsilent mutation count per ICR 1175 

cluster for each cancer type. B. Log transformed predicated neoantigen load per ICR cluster 1176 
for each cancer type. A.B. Red crossbar represents the mean value per ICR cluster. Cancer 1177 

types are ordered by mean nonsilent mutation count per cancer. Nonsilent mutation rate and 1178 
predicted neoantigen load were obtained from Thorsson et al (Thorsson et al., 2018). C. 1179 

Correlation between aneuploidy score and raw/purity adjusted ICR score for all cohorts with 1180 

significant relationships between ICR and aneuploidy. 1181 
 1182 
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 1183 

Figure 4: Relationship between ICR score and mutations in individual genes. A. Top 1184 
35 of mutated genes with negative non-zero coefficients of a trained elastic net model 1185 

identified genes whose mutation is associated with a decrease of the ICR (left panel). Top 1186 

35 mutated genes with a positive association with ICR score in pan-cancer trained model 1187 
(right panel). Contributions of each individual cancer type to the coefficient in trained elastic 1188 

net model are proportionally indicated by size of the bars. B. Ratio of mean ICR score in 1189 

mutated samples and ICR score in WT samples. Cancer types are ordered manually based 1190 
on patterns of calculated ratios. 1191 

 1192 

Figure 5: Pan-cancer clustering based on oncogenic pathway enrichment segregates 1193 
ICR-enabled and ICR-disabled cancer types. A. Heatmap of enrichment scores of 1194 

selected oncogenic pathways, samples are hierarchically clustered in two main clusters: one 1195 

cluster consists mostly of ICR-enabled cancer types (ICR beneficial cluster), while the 1196 
second cluster contains all samples from ICR-disabled cancer types (ICR non-beneficial 1197 
cluster). B. Kaplan-Meier OS curves for ICR High, Medium, and Low clusters for samples in 1198 
the ICR beneficial and ICR non-beneficial cluster separately. C. Subgroup survival analysis 1199 
of all samples of ICR-neutral cancer types clustered in the ICR beneficial cluster and ICR 1200 

non-beneficial cluster. 1201 
 1202 
Figure 6: Examples of pan-cancer binary classifications based on enrichment of 1203 
individual tumor intrinsic gene signatures and corresponding stratified pan-cancer 1204 

survival analysis. A. Histogram showing pan-cancer classification based on median pan-1205 
cancer enrichment value of the proliferation signature as described by Miller et al(Miller et 1206 
al., 2016) (Proliferation Low: ES is lower than median ES observed pan-cancer; Proliferation 1207 

High: ES is higher or equal to median ES observed pan-cancer). B. Pan-cancer Kaplan 1208 
Meier curves of ICR groups stratified by Proliferation High (left panel) and Proliferation Low 1209 

(right panel) groups corresponding to classification as shown in panel A. C. Histogram 1210 

showing pan-cancer classification based on pan-cancer enrichment values of the Hallmark 1211 
pathway TGF-ß signaling. D. Pan-cancer Kaplan Meier curves stratified by TGF-ß signaling 1212 

Low (left panel) and TGF-ß signaling High (right panel) groups corresponding to 1213 
classification as shown in panel C. 1214 

 1215 
 1216 

Figure 7: Conditional predictive value of ICR for response to immune checkpoint 1217 

treatment. A. Predictive value of ICR across public datasets with response to immune 1218 

checkpoint treatment indicated by p-value of two-sided t-test comparing ICR score in samples 1219 
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of responding versus non-responding patients. ICR score was highest in response group for 1220 

all significant comparisons. Response was defined as long-survival or response in the van 1221 
Allen dataset, stable disease, partial response (PR) and complete response (CR) in the Chen 1222 

dataset, and as PRCR in Riaz, Hugo and Prat datasets. B. Boxplot of ICR score in 1223 

“nonresponse” compared with “long-survival or response” to anti-CTLA4 treatment in van Allen 1224 
dataset (left). Boxplots of subgroup analysis of proliferation groups (middle) and TGF-ß 1225 

signaling groups (right). P-value of t-test comparing means are indicated in the plot. C. Kaplan 1226 

Meier curves showing OS across ICR tertiles in all samples (left), across proliferation (middle), 1227 
and TGF-ß signaling subgroups (left). 1228 

 1229 

 1230 
Supplementary Figures 1231 

Supplementary Figure 1: Pearson correlation between RNA-seq expression values of ICR 1232 

genes for each of the 31 cancer types. 1233 
 1234 
Supplementary Figure 2: Scatterplot showing correlation between ICR score and TIS 1235 
score(Danaher et al., 2018) (A), ICR score and leukocyte fraction (B), and ICR score and 1236 
TIL percentage (C). Leukocyte fraction and TIL percentage values were obtained from 1237 

Thorsson et al (Thorsson et al., 2018). Each dot represents a single sample. 1238 
 1239 
Supplementary Figure 3: A. Boxplot showing mean ICR score for each cancer type per 1240 
group of cancer types: ICR-enabled, ICR-neutral and ICR-disabled. A single dot represents 1241 

a single cancer type. B. Boxplot showing delta between mean ICR score in ICR High cluster 1242 
compared with mean ICR score in ICR Low cluster. A single dot represents a single cancer 1243 
type. 1244 

 1245 
Supplementary Figure 4: Pan-cancer Kaplan-Meier curves in ICR-disabled (top left panel) 1246 

and ICR-enabled (top right panel) groups and stratified analysis by AJCC pathologic stage I 1247 

& II (middle panels) and stage III & IV (bottom panels). 1248 
 1249 

Supplementary Figure 5: Dotted heatmap showing mean ES for each immune cell 1250 
population per cancer type, mean ES scores were z-scored per row.  1251 

 1252 
Supplementary Figure 6: A. Scatterplot of mean mutation rate versus mean neoantigen 1253 

load per cancer type. B. Ratio of nonsilent mutation rate between ICR High and ICR Low 1254 

groups versus the ratio of predicted neoantigen load between in ICR High compared to ICR 1255 
Low groups. C. Ratio of nonsilent mutation rate between ICR High and ICR Low groups 1256 
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versus mean nonsilent mutation rate. D. Ratio of predicted neoantigen load between ICR 1257 

High compared to ICR Low groups versus mean predicated neoantigen load. 1258 
 1259 

Supplementary Figure 7: A. Boxplot of ICR score by MSI status in COAD (left panel) and 1260 

STAD (right panel). P-values of t-test to compare mean ICR score per MSI group are 1261 
indicated in the plot. B. Boxplot of number of mutated genes with a negative coefficient in 1262 

ICR trained elastic net model by MSI status in COAD (left panel) and STAD (right panel). P-1263 

values of t-test to compare mean number of mutations per MSI group are indicated in the 1264 
plot. 1265 

 1266 

Supplementary Figure 8: Table to check overlap between tumor intrinsic pathways genes 1267 
and frequently mutated genes. When a gene (columns) is part of a gene signature (rows), 1268 

this is indicated by “YES”, if not, it is indicated by “NO”. Genes that have a negative 1269 

coefficient in trained model are shown in blue, pathways that inversely correlate with ICR 1270 
(Figure 2B) are indicated in blue. Genes that have a positive coefficient in trained model are 1271 
shown in red, pathways that positively correlate with ICR (Figure 2B) are indicated in red. 1272 
 1273 
Supplementary Figure 9: Scatterplots of each of the combinations of: 1) ICR scores, 2) 1274 

proliferation ES, 3) TGF-ß signaling ES, and 4) mutation rate (n = 4452). Pearson’s 1275 
correlation coefficient and regression line (red) are indicated in the plots. 1276 
 1277 
Supplementary Figure 10: Pan-cancer Kaplan Meier curves of ICR groups stratified by 1278 

both Proliferation High (left panels) and Proliferation Low (right panels) groups 1279 
(corresponding to classification of shown in Figure 6A) and by Mutation rate High (top 1280 
panels) and Mutation rate Low (bottom panels) based on pan-cancer median mutation rate.   1281 

 1282 
Supplementary Figure 11: Multivariate Cox proportional hazards model including ICR 1283 

classification, proliferation enrichment, TGF-ß signaling enrichment, and tumor mutation 1284 

rate. 1285 
 1286 

Supplementary Figure 12: Survival analysis of ICR Low versus ICR High in pathway 1287 
enrichment categories across 40 pathway signatures (rows) for each cancer type (columns). 1288 

HRs (hazard ratios) for death in high enrichment categories (A) are compared with HRs in 1289 
low enrichment categories (B). C. Differences in prognostic impact of ICR classification 1290 

between pathway signature enrichment categories for each cancer type. HR of ICR Low vs. 1291 

ICR High was calculated per category from binary classification of enrichment of oncogenic 1292 
pathway signatures (rows) within individual cancer types (columns). The delta between HR 1293 
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in the highly enriched group and the HR in the group with low enrichment was calculated for 1294 

each signature/cancer type combination.  1295 
 1296 

Supplementary Tables 1297 

 1298 
Supplementary Table 1: Association of ICR with OS across 31 cancer types with ICR as a 1299 

categorical variable ICR Low versus ICR High (first and second column; yellow), and ICR as 1300 

continuous variable (third and fourth column; blue). HR, hazard ratio for death. 1301 
 1302 

Supplementary Table 2: Comparison of mean ES of samples from ICR-disabled cancer 1303 

types with mean ES of samples from ICR-enabled cancer types for 54 oncogenic pathway 1304 
gene signatures.  1305 

 1306 

Supplementary Table 3: Pan-cancer survival analysis stratified by binary classification 1307 
based on enrichment of selected oncogenic pathway signatures. HR, hazard ratio for death. 1308 
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