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Abstract

Motivation: The cost of drug development has dramatically increased in the last decades, with the
number new drugs approved per billion US dollars spent on R&D halving every year or less. The selection
and prioritization of targets is one the the most influential decisions in drug discovery. Here we present
a Gaussian Process model for the prioritization of drug targets cast as a problem of learning with only
positive and unlabeled examples.
Results: Since the absence of negative samples does not allow standard methods for automatic selection
of hyperparameters, we propose a novel approach for hyperparameter selection of the kernel in One
Class Gaussian Processes. We compare our methods with state-of-the-art approaches on benchmark
datasets and then show its application to druggability prediction of oncology drugs. Our score reaches
an AUC 0.90 on a set of clinical trial targets starting from a small training set of 102 validated oncology
targets. Our score recovers the majority of known drug targets and can be used to identify novel set of
proteins as drug target candidates.
Availability: Source code implemented in Python is freely available for download at
https://github.com/AntonioDeFalco/Adaptive-OCGP.
Contact: michele.ceccarelli@unina.it
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
The selection and prioritization of drug targets represents a central
problem in drug discovery. Drug targets are proteins associated with
a particular disease process and that could be addressed by a drug in
order to obtain a specific therapeutic effect (Triggle and Taylor, 2006).
Experimental approaches to target identification are typically expensive
and labor intensive (Behan et al., 2019; McFarland et al., 2018). The
whole process from discovery to approval of a drug can take 10-15 years
and up to several billions of investments (Madhukar et al., 2019). One

of the bottlenecks is the identification and prioritization of suitable drug
targets. On the other hand, the increasing amount of data, which allows the
creation of large scale human genomics and proteomics datasets, have the
potential to substantially reduce the work and resources needed. Machine
learning approaches can exploit the shared features between approved
targets to select and score unknown targets (Dezső and Ceccarelli, 2020;
Isik et al., 2015; Kim et al., 2017; Bakheet and Doig, 2009). If we
focus just on Oncology, there are actually less than 150 proteins that are
targets of approved drugs. These proteins can be seen as seed positive
examples whose properties can be used by a learning machine to score all
other potential drug targets. This kind of problem is known in machine
learning as One Class Classification (OCC) or Positive Unlabeled (PU)
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problems (Elkan and Noto, 2008; Cerulo et al., 2010) with the additional
complication of the high unbalance between the positive set and the wide
set on unlabeled samples (He and Garcia, 2009). We have previously shown
that a combination of bagging and easy ensemble approaches (Dezső and
Ceccarelli, 2020; He and Garcia, 2009) can be a viable solution which
comes at the cost of the need of generating thousands of classifiers trained
with samples from the unlabeled set. Here we show that the geometry
of this small set of positive examples can be modeled using a class of
non-parametric regressors and classifiers based on Gaussian Processes
(GP) (Rasmussen and Williams, 2006). In particular One-Class Gaussian
Processes (OCGP) have been shown to outperform other kernel-based
classifiers for binary and multi-class categorization of images (Kemmler
et al., 2010; Kapoor et al., 2007). Despite the availability of robust linear-
algebra algorithm for GPs (Rasmussen and Williams, 2006), the training
of OCGP has some additional open questions related to the appropriate
selection of hyperparameters of the kernel covariance function. Indeed,
the presence of only positive samples of the training datasets makes
it impossible to automatically select hyperparameters in GPs based on
maximizing marginal likelihood (Kemmler et al., 2010).

Xiao et al., 2015 recently addressed this problem. The idea is to classify
the positive samples between "internal" (those in the center of the envelope
containing the training set), and "edge" samples (those in the vicinity of the
border of the envelope). The authors optimize the parameter by maximizing
the difference between the regression function of the internal and edge
samples. Other approaches use the distribution of distances among training
data (Li et al., 2015), or a different score for every positive sample based on
the distances between that sample from all others (Kalantari et al., 2016).

Here we propose a novel solution for an adaptive selection of the
hyperparameters of the covariance function. We show that a local estimate
based on the distance between a sample and its neighbors can outperform
the method proposed in Xiao et al., 2015 both on the UCI machine learning
benchmark datasets (http://homepage.tudelft.nl/n9d04/occ/index.html)
and for the specific problem of drug target prioritization. In order to
evaluate and compare the accuracy of prediction of our method we use
a set of additional 277 targets for drugs in oncology clinical trials not
belonging to the training set.

The article is organized as follows, in the Section 2 we introduce the
dataset for drug target prioritization, the GPs in OCC case and our proposed
adaptive selection to address the problem of hyperparameter selection. In
the Section 3 we benchmark our novel method with the one-class logistic
regression (OCLR) and with hyperparameters selection of Xiao et al.,
2015, on UCI datasets and then on drug target prioritization problem.
Finally, in section 4 we summarize the results of the experiments.

2 Methods

2.1 Protein Features

Here we focus only on cancer drug targets. We identify a set of approved
cancer drugs based on the TTD database (Li et al., 2017), which contained
2917 unique protein targets of which 345 were approved, 903 clinical
trials and 1669 research targets. Only oncological targets approved and
in the experimentation phase have been selected, obtaining a set of 102

approved drug targets and another 277 clinical trial targets (Supplementary
Table 1). Finally, the dataset consists of all human proteins and each of
them has 70 features obtained by combining the information in the Swiss-
prot database (Bairoch, 1991), network centrality properties determined on
the basis of protein-protein network information in the STRING database
(Szklarczyk et al., 2018) and computationally predicting the missing data
as previously described (Dezső and Ceccarelli, 2020).

2.2 Gaussian Processes for OCC

Formally a Gaussian Process (GP) is defined as a collection of random
variables, any finite number of which have a joint Gaussian distribution
(Rasmussen and Williams, 2006). In order to specify a GP we only need
to identify its mean and covariance functions. If the random variables
represent the value of a latent function f(x) at location x, the mean
function m(x) and the covariance k(x,x′) of our GP are:

m(x) = E[f(x)]

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))]
(1)

and we write:
f(x) ∼ GP(m(x), k(x,x′)). (2)

Usually, the mean function is assumed to be zero. A GP is a very
effective way to model a prior over functions simply by specifying the
covariance such as for example the squared exponential, which allows
to sample from smooth functions. The covariance function k(·, ·) is also
called the kernel. Given a set of, eventually noisy, training observations
{(xi, fi)|i = 1, . . . , n}, and a set of test points {(x∗i f∗i ), |i =

1, . . . , n′}, the joint distribution of the training and test output (f , f∗) =

(f1, ..., fn, f∗1 , ..., f
∗
n′ ) is also Gaussian. GPs provide an elegant and

efficient way to perform inference by incorporating the knowledge that
the training data provides about the test data through conditioning:

(3)
f∗|X,X∗, f ∼ N (k(X∗, X)k(X,X)−1f ,

k(X∗, X∗)− k(X∗, X)k(X,X)−1k(X,X∗))

where k(X∗, X) is the n′ × n covariance matrix evaluated at all
pairs of training and test points, analogously for the other matrices
k(X,X), k(X∗, X∗) and the k(X,X∗). If the observations are affected
by additive identically distributed Gaussian noise with variance σn, the
n×nmatrix k(X,X) in equation (3) is replaced with [k(X,X) +σnI]

(Rasmussen and Williams, 2006). Other then regression, GPs can be also
used for classification. In binary classification, the basic idea is to use
the output of a GP regression model as a latent variable which is then
fed into a non-linear response function, such as the logistic or probit,
that compresses the output in the range [0, 1]. Consider the two-class
problem with target variable y ∈ {0, 1}. If we define a GP over a latent
variable f(x) and then apply a response function γ() which “squashes” its
argument between [0, 1], then we obtain a stochastic non-Gaussian process

π(x)
def
= p(y = 1|x) = γ(f(x)). In the case of classification we do not

observe the function f but rather the input X = {xi|i = 1, ..., n} and
the corresponding class labels y1, ..., yn, and therefore we are interested
in the value of π over the test cases π(x∗). Inference, in the case of
classification, is divided in two steps:

• first computing the distribution of the latent variable corresponding to
a test case:

p(f∗|X,y,x∗) =

∫
p(f∗|X,x∗, f)p(f |X,y)df (4)

here p(f |X,y) is the posterior over the latent variables.
• the prediction is then produced averaging the response function γ()

using the distribution (4)

π̄
def
= p(y∗ = 1|X,y,x∗) =

∫
γ(f∗)p(f∗|X,y,x∗)df∗. (5)

Since the posterior p(f |X,y) ∝ p(y|f)p(f |X) and p(y|f) is non-
Gaussian, the integral in (4) cannot be analytically treated and inference is
performed by a Gaussian approximation of the posterior through Laplace
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One-Class Gaussian Processes for Drug Targets Prioritization 3

Approximation (Rasmussen and Williams, 2006) or using Expectation
Propagation (Minka, 2001). The second one-dimensional integral (5) can
be analytically computed in the case of probit regression or with sampling
methods or analytical approximations if γ is the logistic sigmoid.

The use of GP for one class problem has been pioneered in Kemmler
et al., 2010. The basic idea is to impose zero mean on the GP prior and
use the value of f = 1 in equation (3) on the positive examples. This
will give high probability to latent functions with values that gradually
decrease for observations that are far from the positive examples. When
used in combination with the choice of a smooth co-variance function,
this approach results in an important subset of latent functions that can be
used for OCC (Kemmler et al., 2010). As shown in Figure 1 the predictive
mean decreases for inputs far from the training data, while the predictive
variance increases. The mean and variance, which are computed according
to equation (3), both represent possible membership scores in the one
class classification problem. The predictive mean divided by the standard
deviation as a combined measure to describe the uncertainty of estimation
has also been proposed in Kapoor et al., 2010 as an estimation of the
uncertainty. Therefore as in Kemmler et al., 2010 we will use four possible
scores for an unknown observation x∗:

• Mean: µ∗ = k(x∗, X)k(X,X)−11

• Neg. Variance:−σ2
∗ = k(x∗, X)k(X,X)−1k(X,x∗)−k(x∗, x∗)

• Probability: equation (5)
• Heuristics: µ∗ · σ−1

∗

The kernel is the main component in GPs, as it represents some
form of distance or similarity between data points and determines the
characteristics of the function to predict. Here we use the Squared
Exponential (SE) kernel, which is the most used in GPs and thus defined:

kSE
(
x, x′

)
= exp

(
−

(x− x′)2

2`2

)
(6)

It is widely used due to its properties, infinitely differentiable and invariant
in translation and rotation in both signal and frequency domains. It also has
only a hyperparameter the lenght-scale (`) that determines the length of
the "oscillations" in the function, with small value the function can change
quickly, and conversely with large values.

2.3 Hyperparameter Selection

As shown in Figure 1, the hyperparameters significantly affect the
performance of the GPs, and in particular for OCC problems, the absence of
negative samples in the training dataset does not allow automatic selection
of hyperparameters through maximization of marginal likelihood.

Xiao et al., 2015 propose an original solutions to this problem, based on
the distinction of the internal samples and the edge samples of the positive
class. The internal samples are assumed to be the most representative
samples, instead the edge samples that are located at the extremes of the
region are considered the samples closest to the possible negative regions.
Consequently the predictions of GPs for the internal samples should be
more certain, i.e. the predictive mean should be higher and the predictive
variance lower, conversely for the edge samples. The authors select
the optimal parameter by maximizing the Kullback-Leibler divergence
between the predictions distribution these two set of samples.

Li et al., 2015 propose another solution to determine the
hyperparameters, based simply on distribution of distances among training
data. The possible hyperparameters vary between half the average of
distances to nine times the average of distances, and get better performance
when the value is between three and seven times the average of the
distances.

Kalantari et al., 2016 instead propose two variants of one class GPs,
the first is OCGP-thrifty which does not set all training target values to

Fig. 1: OCGP regression 1-D using SE kernel. The predictive distribution
is visualized, mean (blue line) and variances (light blue area), training
points are marked as red asterisks. In the upper panel ` = 1.0 is used, in
the bottom panel ` = 0.3.

Fig. 2: OCGP regression 1-D, using SE kernel and an implementation of
Xiao et al., 2015 hyperparameter selection method.

1, but is based on the similarity of the training samples with the positive
class. Specifically, the target value for a training sample is the average of
the squared distances of that sample from all others. The second variant
is OCGP-greedy which assumes that the information from other classes is
available, and use it to train a one class model. The target training values
are set as in OCGP-thrifty, also for samples of other classes. In the training
phase, to find the hyperparameters, is built a regression model using all the
training samples. In the test phase, to calculate the predictions, only the
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4 De Falco et al.

samples of the positive class are used. The authors show that OCGP-greedy
usually obtain better results, but it cannot be applied if only samples of the
positive class are labeled as in our case.

2.4 Adaptive Hyperparameter

Here we do not set a single fixed value for the lenght-scale hyperparameter
of the covariance function, and adapt this value for each training sample
based on local density. This adaptive hyperparameter depends on the local
distribution of the training data, the basic idea is to give more weight to the
training samples belonging to dense areas, which represent the examples
sharing common features of the positive class, and can be considered the
most representative samples. On the other hand, we give less weight to
training data lying in sparse areas, which could be less representative or
outliers.

Given a sample xi, let {Nm
i }Nm=1 the set of its first N neighbors

ordered according to their distance from xi. Then the value `i of each
sample is set to the euclidean distance of i-th sample from its p-th nearest
neighbor.

`i = d(xi,N p
i ) (7)

Therefore the Adaptive Kernel is larger in sparse areas and smaller in
dense areas and is defined as:

k
(
xi, xj

)
= exp

(
−
(
xi − xj

)2
2`2i

)
(8)

Since using equation (8) we have k(xi, xj) 6= k(xj , xi), then we
symmetrize the covariance matrix using (K +KT )/2 as covariance.

Figure 3 shows an example in 1-D OCC setting of GP regression using
zero-mean and our Adaptive Kernel with p = 2. The proposed solution
allows to distinguish dense areas from areas with few samples, compared
to the case where the hyperparameter is a constant value as shown in the
Figure 1 or using the method of Xiao et al., 2015 as shown in the Figure 2.
Using the Adaptive Kernel the predictive mean and the predictive variance
tend to adapt better to the general trend of the training set. We selectively
obtain high scores for test input near training samples belonging to dense
areas of the input space, which are theoretically the most representative
positive samples.

The proposed Adaptive Kernel simply requires a search of the p-
nearest neighbors of the training samples. Considering that a conventional
p-nearest neighbors algorithm has O(npd) complexity or O(nd +

pn) complexity pre-calculating and storing distances, it represents a
computationally much more efficient solution, compared to the method
of Xiao et al., 2015 based on the edge-internal samples that has O

(
n3
)

complexity since it involve the computation of series of GPs.
We also explore another approach to automatically determine

an adaptive hyperparameter: Scaled Kernel. This method has been
successfully used in Similarity Network Fusion (SNF) (Wang et al., 2014).
In this case, hyperparameter selection combines the distance between
samples and the average distance from the neighbors:

k
(
xi, xj

)
= exp

(
−

(xi − xj)2

νεi,j

)
(9)

εi,j =
mean (d (xi,Ni)) + mean (d (xj ,Nj)) + d (xi, xj)

3
(10)

In the Scaled Kernel equation (9) the parameter εi,j combines the
euclidean distance of the samples with the average distance of samples
from the respectiveN nearest neighbors. Whered(xi, xj) is the Euclidean
distance, ν is a parameter that can be empirically set, and is usually set in

Fig. 3: OCGP regression 1-D, in the upper panel is used the proposed
Adaptive Kernel (8) (p = 2), in the bottom panel the Scaled Kernel (9)
(N = 5).

in the range [0.3, 0.8], N represents the number of neighbors considered
in the calculation of the average.

Figure 3 also shows an example of the Scaled Kernel with N = 5 in
the mono-dimensional space, that like the Adaptive Kernel allows a better
distinction of the dense areas.

3 Results
In this section, before reporting the application of the adaptive OCGP to the
problem of drug target prioritization, we want to benchmark the proposed
method with the method for hyperparameters selection for OCGP proposed
in Xiao et al., 2015 and also with the other one class classifiers such as
support vector data description (SVDD) (Tax and Duin, 2004), one class
SVM (OCSVM) (Schölkopf et al., 2001) and one-class logistic regression
(OCLR) (Sokolov et al., 2016).

3.1 UCI Datasets

For experiments performed on nine UCI datasets (Table 1) we set p = 2

in (8), while ν = 0.8 and N = 5 were used in (9).
For each dataset, we consider the class with the highest number of

samples as the positive class, then 80% of the positive samples are
randomly chosen to build the training set while the remaining 20% of
positive samples and all negative samples constitute the test set. 20

iterations of subdivision of the train and test sets are performed. The
calculation of hyperparameter lenght-scale ` is performed only after
normalizing data with Z-score normalization. We report in Table 2
the average results across all iterations using both predictive mean and
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One-Class Gaussian Processes for Drug Targets Prioritization 5

Table 1. UCI datasets

dataset features pos neg

Abalone 10 2770 1407
Balance 4 288 337
Biomed 5 127 67
Heart 13 164 139
Hepatitis 19 123 32
Housing 13 458 48
Ionosphere 34 225 126
Vehicle 18 647 199
Waveform 21 600 300

Table 2. Benchmark on UCI datasets (AUC scores).

Xiao et al. Adaptive(8) Scaled(9) OCLR OCSVM SVDD
µ∗ −σ2

∗ µ∗ −σ2
∗ µ∗ −σ2

∗ rbf poly3

Abal. 0.7894 0.7897 0.7745 0.7428 0.7742 0.7092 0.8760 0.6471 0.8608
Bala. 0.8366 0.8735 0.9468 0.9682 0.8657 0.9402 0.5599 0.8266 0.7198
Biom. 0.8998 0.9036 0.9028 0.8960 0.9073 0.9117 0.9050 0.8129 0.8570
Hear. 0.8339 0.8379 0.8093 0.7925 0.8408 0.8135 0.5379 0.6880 0.7918
Hepa. 0.8378 0.8379 0.8006 0.7794 0.8242 0.7963 0.5829 0.7257 0.8055
Hous. 0.7917 0.7874 0.8677 0.8680 0.8107 0.8492 0.6742 0.8217 0.8374
Iono. 0.9265 0.9504 0.9550 0.9649 0.9697 0.9712 0.8107 0.9115 0.9341
Vehi. 0.5183 0.5714 0.7965 0.8656 0.6855 0.8187 0.7908 0.5601 0.5696
Wave. 0.7497 0.8004 0.7808 0.8167 0.8024 0.7998 0.8348 0.6160 0.5088
Aver. 0.7982 0.8169 0.8482 0.8549 0.8312 0.8455 0.7299 0.7344 0.7650

negative variance as scores. The results show that the proposed adaptive
hyperparameter for both Adaptive Kernel (8) and Scaled Kernel(9) produce
a significant improvement in performance when compared to the selection
of the hyperparameter based on the internal and edge samples by Xiao
et al., 2015, in particular the Adaptive Kernel (8) attains the best result on
the average of all datasets, with an increase from 4 to 5 percentage for the
two scores mean and negative predictive variance.

Table 2 also shows the results obtained using support vector data
description (SVDD) (Tax and Duin, 2004), one class SVM (OCSVM)
(Schölkopf et al., 2001) and one-class logistic regression (OCLR) (Sokolov
et al., 2016). For OCSVM and OCSVM, since stationary kernels such as
the rbf kernel produce the same results (Schölkopf et al., 2001), we use
rbf kernel for OCSVM and polynomial kernel of degree 3 for SVDD.
The results confirm that Gaussian Processes are particularly suited for
one class problems, with respect to other approaches as also reported in
previous works Kemmler et al., 2010.

Since the proposed adaptive kernels depend on some parameters such
as p for the Adaptive Kernel and N for the Scaled Kernel, we want to
analyze how the performance vary with the choice of these parameters.
The results reported below show the AUC measurement on the predictive
mean obtained from the average of the 20 random splits of each dataset,
as function of the parameters. In the case of the Scaled Kernel (9), whose
results are shown in Figure 4, the AUC is almost constant for all of datasets,
demonstrating that this kernel is very little affected by variation of the
parameterN . The Adaptive Kernel (8), reported in Figure 5, shows instead
a slightly greater variations of performance for some datasets as a function
of the p parameter.

3.2 Drug Target

Our dataset for the prioritization of Oncology Drug Targets consists
of 20403 proteins, of which 102 are validated oncology targets, used
for training, and 277 targets of clinical trial drugs. These last 277
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Fig. 4: AUC scores (µ∗) on UCI datasets using the Scaled Kernel (9) with
different values for the N parameter.
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Fig. 5: AUC scores (µ∗) on UCI datasets using the Adaptive Kernel (8)
with different values for the p parameter.

proteins are used as validation set in our experiments. We extracted 70

protein features related to properties derived from the sequence, protein
functions and network properties derived from protein-protein interaction
network as previously reported (Dezső and Ceccarelli, 2020). The protein
features in the dataset included continuous and categorical features, the
latter are encoded with one-hot encoding and with frequency encoding.
Some pre-processing steps are performed on the dataset, the features
with a heavy-tailed distribution are log-transformed, and all features are
scaled between [0, 1] by min-max normalization. Furthermore, principal
component analysis (PCA) is used to obtain the first principal components
that allow 80% of the data variance to be retained.

First, we compare OCGPs with other OCCs. Table 3 reports the AUC
obtained by the considered models and confirms that OCGPs outperform
other classifiers.
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6 De Falco et al.

Table 3. Benchmark of one class
classifiers on Drug Target dataset

OC Classifiers kernel AUC

OCLR 0.6120
OCSVM rbf 0.6958
SVDD poly 0.8253
OCGP (` = 0.3) rbf 0.8388

Table 4. AUC scores (µ∗) on Drug Target Dataset

preprocessing Adapt. (8) Xiao et al. Scaled (9)

scale 0.8613 0.8680 0.8555
scale+logtrasf. 0.8878 0.8610 0.8633
scale+logtrasf.+PCA 0.8928 0.8781 0.8759

0 10 20 30 40 50

p & N

0.865

0.87

0.875

0.88

0.885

0.89

0.895

A
U

C

Adaptive

Scaled

Fig. 6: AUC scores (µ∗) on Drug Target Dataset using Adaptive Kernel
and Scaled Kernel with different values for the p and N parameters.

Then we show how the adaptive kernel can improve the classification
accuracy. In what follows, we used p = 30 in equation(8), while ν = 0.8

and N = 4 are used in equation (9).
In order to evaluate how the preprocessing influences the accuracy,

Table 4 shows the results, in terms of the AUC measure on the
predictive mean, obtained by adding individually the pre-processing steps
described above. The results show that pre-processing lead to a significant
improvement in results and the proposed Adaptive Kernel (8) attains better
performance than the others.

We evaluate whether feature selection can possibly improve the results.
We used Sequential Forward Selection (SFS) (Whitney, 1971), a sequential
search algorithm in which features are added sequentially to an empty set
of candidates, until the inclusion of additional features does not allow any
improvement of the adopted criterion, in our case the criterion to improve
is AUC measurement on the predictive mean.

The Sequential forward selection (SFS) selects 37 features and
results in a significant improvement of the performance as shown in
table 5 with Adaptive Kernel using the predictive mean as score.
Interestingly, the features selected by the algorithm (Supplementary
Table 1) include network centrality measures (betweenness, degree page-
rank, closeness) as well biological process and others. Indeed, it is
expected because the interaction between drugs and their targets activates
signaling cascades through Protein-Protein Interaction networks causing
downstream perturbations in the cell’s transcriptome. A (PPI) network thus
models the cascade of relationships between targets and proteins by using
physical contacts, genetic interactions, and functional relationships.

Table 5. Benchmark of hyperparameter selection methods with
SFS feature selection. (AUC on the four possible scores).

Hyperparameter Selection µ∗ −σ2
∗ Eq. (5) µ∗ · σ−1

∗

Xiao 0.8781 0.8705 0.8783 0.8773
Xiao + SFS 0.8881 0.8717 0.8881 0.8861
Adaptive 0.8883 0.8667 0.8878 0.8860
Adaptive + SFS 0.9008 0.8677 0.9002 0.8981
Scaled 0.8759 0.8500 0.8765 0.8755
Scaled + SFS 0.8911 0.8569 0.8907 0.8899

Table 6. Hyperparameters selected by the
methods

Hyperparameter Selection min(`) max(`)

Xiao 10.3621
Xiao + SFS 6.7363
Adaptive 4.1693 6.0390
Adaptive + SFS 3.9048 5.2675

The Adaptive Kernel outperform other methods on this dataset, but
the scores obtained for test inputs differed for very low values. This is
due to the hyperparameters computed before preprocessing that have high
values which consequently results in kernel values close to 0 after division
with `. For this reason to obtain a better dynamics, which guarantees a
better interpretability of results, we can apply logarithm or square root to
transform the hyperparameters computed before the preprocessing. Choice
that guarantees performances comparable to the previous results, as shown
in the table 5 where we log transform the hyperparameters for the Adaptive
Kernel.

Figure 7 shows the comparison of the prediction of scores for the
approved targets, clinical targets and all other proteins. As expected, the
102 approved targets of our training set had the highest score with a median
of 0.92. Instead for the test set the independent set of 277 cancer clinical
targets was characterized by a high median score of 0.77 unlike the rest
of the proteins which had a median score of 0.43 in the unlabeled set.
Although the majority of these proteins have a lower score predicted by
our model, this set contains outliers with a high score that can be considered
interesting potential drug targets such as for example the 171 outliers, with
scores greater than 0.91 in the boxplot of unlabeled proteins represented
in red in Figure 7.

Some of these outliers are the subject of recent studies indicating
their use as a target in oncological diseases. Among these in particular
to be noted the proteins shown in the table 7: IL7R is considered in
Cramer et al., 2016 as a potential target of further therapy for leukemia
patients, since the targeting of IL-7Rα signaling pathways has the
potential to reduce cell proliferation and survival. JAG1 and DLL4
are most important ligands of Notch signaling, which has key role in
development and progression of cancer, and represents an important
therapeutic target, e.g. in several studies the blocking of their signaling
in tumors has shown interruption of angiogenesis and inhibition of tumor
growth (Oon et al., 2017; Kangsamaksin et al., 2015). PDGF and/or
PDGF receptors are overexpressed or mutated in different tumors then their
targeting can be beneficial in tumor treatment (Heldin, 2013; Papadopoulos
and Lennartsson, 2017), e.g. targeting PDGFRA with crenolanib has
shown significantly prevented tumor growth in inflammatory breast cancer
(IBC) (Joglekar-Javadekar et al., 2017) . Moreover Epiregulin (EREG)
is identified as a possible target in lung cancer (Bauer et al., 2017),
particularly for Non-small-cell lung carcinoma (NSCLC) (Sunaga and
Kaira, 2015). Adiponectin (ADIPOQ) is considered a potential target to
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Fig. 7: Distribution of predictions scores among the training set (approved
targets), validation set (clinical trial) and the rest of the proteins. Median
score: Unlabeled 0.4331, Clinical Trial 0.77196, Approved Targets: 0.9184

Table 7. Possible
drug targets among
the outliers

Gene Score
IL7R 0.99199
JAG1 0.99122
PDGFA 0.98761
EREG 0.98334
ADIPOQ 0.98224
FGF10 0.98015
DLL4 0.97909
FZD2 0.97304

many human disorders, including in particular prostate cancer (Karnati
et al., 2017; Hu et al., 2019). FGF10 is considered in several studies a
possible target in particular of Pancreatic ductal adenocarcinoma (PDAC)
(Clayton and Grose, 2018; Ndlovu et al., 2018). FZD2 is correlated with
different cancers as shown in several studies, e.g. Huang et al., 2019
confirms its oncogenic role in tongue cancer, and that it can be taken
into account as a therapeutic target.

4 Discussion
Drug discovery is becoming more and more expensive over time despite
improvements in technology. Estimates report that the number of new
drugs approved per billion US dollars spent on R&D has halved roughly
every 9 years since 1950 (Scannell et al., 2012). The choice of appropriate
therapeutic targets is one of the crucial steps in the drug discovery. Machine
learning approaches can exploit available high-quality and abundant data
to improve decision making in all stages of drug discovery in order to speed
up the process and reduce failure rates in drug development. (Vamathevan
et al., 2019). Here we presented a Machine Learning approach to prioritize
proteins according to their similarity to approved drug targets. The main
characteristic of our approach is the fact that it is completely unbiased.

We use a large collection of protein features and let the learning method
score the features of approved targets. Since we are interested in the
extending this score to other proteins, our machine learning problem turned
out to belong to the class on positive only problems that we approach
using One Class Gaussian Processes. We also proposed a method for the
selection of the lenght-scale hyperparameter of the radial basis function

kernel of the Gaussian Process. The basic idea is the use of a different
hyperparameter for each training sample, creating an Adaptive Kernel that
varies depending on whether the training sample belongs to a sparse or
dense area. The main aim is to give more importance to samples of dense
areas, considered the most representative samples of the positive class.
The validity of the proposed solution is shown in the results on the UCI
benchmark datasets, confirming that the proposed method outperform the
current state of the art based on edge-internal samples.

The development of a machine learning model based on OCGP
combined with the use of the our Adaptive Kernels for the hyperparameter
selection, allows to define a druggability score for each protein with
high performance (AUC of 0.90) on targets in clinical trials. Furthermore
several proteins outside the training set and validation set have a very
high predicted score and can be consideres as further interesting potential
candidates. The results obtained confirm the effectiveness of GPs in the
one class classification problems, and that they can be be improved with
a correct selection of the hyperparameters. The use of GP allows to
obtain better results than and ensemble of Random Forest on the same
set of features (Dezső and Ceccarelli, 2020). We have also show that our
approach compares favorably with one class logistic regression (Sokolov
et al., 2016).
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