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Abstract  

Purpose 

Predictive biomarkers of immune checkpoint inhibitors (ICIs) efficacy are currently 

lacking for non-small cell lung cancer (NSCLC). Here, we describe the results from the 

Anti–PD-1 Response Prediction DREAM Challenge, a crowdsourced initiative that 

enabled the assessment of predictive models by using data from two randomized 

controlled clinical trials (RCTs) of ICIs in first-line metastatic NSCLC. 

Methods 

Participants developed and trained models using public resources. These were 

evaluated with data from the CheckMate 026 trial (NCT02041533), according to the 

model-to-data paradigm to maintain patient confidentiality. The generalizability of the 

models with the best predictive performance was assessed using data from the 

CheckMate 227 trial (NCT02477826). Both trials were phase III RCTs with a 

chemotherapy control arm, which supported the differentiation between predictive and 

prognostic models. Isolated model containers were evaluated using a bespoke strategy 

that considered the challenges of handling transcriptome data from clinical trials. 

Results 

A total of 59 teams participated, with 417 models submitted. Multiple predictive models, 

as opposed to a prognostic model, were generated for predicting overall survival, 

progression-free survival, and progressive disease status with ICIs. Variables within the 

models submitted by participants included tumor mutational burden (TMB), programmed 

death ligand 1 (PD-L1) expression, and gene-expression–based signatures. The best-

performing models showed improved predictive power over reference variables, 

including TMB or PD-L1. 
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Conclusion 

This DREAM Challenge is the first successful attempt to use protected phase III clinical 

data for a crowdsourced effort towards generating predictive models for ICIs clinical 

outcomes and could serve as a blueprint for similar efforts in other tumor types and 

disease states, setting a benchmark for future studies aiming to identify biomarkers 

predictive of ICIs efficacy. 

(274/275 words) 
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Context summary  

Key objective 

Not all patients with non-small cell lung cancer (NSCLC) eligible for immune checkpoint 

inhibitor (ICIs) respond to treatment, but accurate predictive biomarkers of ICIs clinical 

outcomes are currently lacking. This crowdsourced initiative enabled the robust 

assessment of predictive models using data from two randomized clinical trials of first-

line ICI in metastatic NSCLC. 

Knowledge generated 

Models submitted indicate that a combination of programmed death ligand 1 (PD-L1), 

tumor mutational burden (TMB), and immune gene signatures might be able to identify 

patients more likely to respond to ICIs. TMB and PD-L1 seemed important to predict 

progression-free survival and overall survival. Mechanisms including apoptosis, T-cell 

crosstalk, and adaptive immune resistance appeared essential to predict response. 

Relevance 
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Introduction 

Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment, with 

advanced non-small cell lung cancer (NSCLC) among the tumor types showing longer 

survival with ICIs than with chemotherapy in multiple treatment lines.1-4 While ICIs have 

demonstrated high response rates in some tumor types,5 not all patients with advanced 

cancer eligible for ICIs respond to them, highlighting the need for biomarkers predictive 

of their efficacy.6-8 

Multiple biomarkers have been explored as predictors of clinical outcomes, including 

programmed death ligand 1 (PD-L1) expression and tumor mutational burden (TMB), 

which are used in clinical practice but are imperfect predictors of ICI response and not 

standardized across studies.9 Associations between clinical outcomes with ICIs and 

certain biomarkers, including immune-related gene expression, gene signatures, and 

adaptive immune receptor repertoire features (eg, T-cell–inflamed gene expression, 

chemokine expression, immunologic constant of rejection [ICR], T-cell receptor 

repertoire clonality) have been reported.10-14 However, a comparison of performance of 

these markers using large, independent validation datasets is lacking. Biomarker 

studies in NSCLC have been limited by small sample sizes and lack of a chemotherapy 

control arm, preventing differentiation between prognostic and predictive biomarkers.15-

18 Robust predictive biomarkers will be critical to identify who would be more likely to 

benefit from ICIs, and could guide treatment choice and serve as trial stratification 

factors.  
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Here, we describe the Anti–PD-1 Response Prediction DREAM Challenge, a 

crowdsourced initiative that enabled the assessment of predictive models using data 

from two randomized clinical trials (RCTs) of first-line ICIs in NSCLC. We used an 

innovative model-to-data paradigm that enabled broad participation without requiring 

direct access to restricted data. This approach protected patient confidentiality while 

mitigating the risk of overfitting, lack of replicability, and irreproducibility.19,20 

The pioneering design of this Challenge addressed scientific and technical issues that 

the community has faced in identifying robust predictors of ICI efficacy. The 

engagement of worldwide researchers using a reference dataset and consistent metrics 

leveled the playing field and allowed for head-to-head comparisons of model 

performance. The use of data from large, mature, well-annotated RCTs eliminated, at 

least partially, the limitations of analyses based on smaller trials, observational studies, 

or restricted sample cohorts. Metrics using information from both treatment and control 

arms allow the differentiation of prognostic models from those that are predictive of 

population-level benefit from ICI therapies. Finally, the combination of closed 

competitive and open cooperative phases of this Challenge enabled unprecedented 

collaboration among academic and industry leaders.  

Materials and Methods 

Challenge Questions 

A steering committee, including members from Bristol Myers Squibb, Sage Bionetworks, 

and oncology physician-scientists, developed clinically relevant questions that could be 

addressed through the DREAM Challenge framework. This Challenge comprised three 
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sub-challenges to identify models predictive of progression-free survival (PFS), overall 

survival (OS), and best overall response (BOR) of progressive disease (PD) with ICI 

treatment (Table 1).21 

Training and Validation Datasets 

The design of the Challenge is summarized in Figure 1. To protect patient 

confidentiality, participants could not access directly the evaluation dataset (CheckMate 

026), in line with the model-to-data paradigm.19 Because of the abundance of publicly 

available datasets, participants were not provided training data, thereby maintaining a 

large testing dataset. The variables available to participants and details on the training 

data used for model construction are shown in Supplementary Table 1 and 

Supplementary Methods 1, respectively. Gene-expression–based predictors are shown 

in Supplementary Tables 2 and 3. Participants developed and trained predictive models 

using publicly available resources, including those referenced on the Challenge website 

(TIDE resources,22 The Cancer Research Institute’s iAtlas,23 and other published data)24 

and other datasets accessible via their institutions. To ensure proper execution of the 

independently trained models on the embargoed evaluation dataset, a synthetic dataset 

with the same formatting as the evaluation dataset was available. Participants submitted 

dockerized models25 consisting of the model itself plus software components to run the 

model in the DREAM evaluation infrastructure (Supplementary Methods 2). This 

approach supported reproducibility and a platform-independent evaluation of submitted 

models. Each team could submit different models for each sub-challenge. 
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The evaluation dataset from CheckMate 026 (NCT02041533)26 was selected because it 

was large, contained multimodal data, was well-characterized at the clinical and 

molecular level, and allowed potential differentiation between predictive and prognostic 

models.27 In CheckMate 026, patients with untreated stage IV or recurrent NSCLC and 

tumor PD-L1 ≥ 1% were randomized 1:1 to receive nivolumab or platinum-based 

chemotherapy.26 Top-performing models identified with CheckMate 026 data were 

validated on an independent dataset from CheckMate 227 (Part 1) (NCT02477826) in 

patients with stage IV or recurrent NSCLC.28,29 Identification of potential biomarkers of 

response to nivolumab were protocol-defined exploratory end points in both CheckMate 

026 and 227. In CheckMate 227, patients with tumor PD-L1 ≥ 1% (Part 1a) received 

either nivolumab + ipilimumab, nivolumab monotherapy, or chemotherapy; patients with 

PD-L1 < 1% (Part 1b) received either nivolumab + ipilimumab, nivolumab + 

chemotherapy, or chemotherapy for the first-line treatment of metastatic NSCLC.28,29 

Top-performing models were validated in the nivolumab + ipilimumab arms of 

CheckMate 227 in patients with any level of PD-L1 expression, as these arms were part 

of the successful primary end points of that trial. Baseline characteristics of patients in 

CheckMate 026 and 227 were published previously (Supplementary Tables 4 and 

5).26,28,29 

Assessing Model Performance 

Performance metrics (Table 1) were designed to identify predictive rather than 

prognostic models: top-performing models should accurately rank response measures 

for patients in the ICI arm but not in the chemotherapy arm to reflect a model’s capacity 

to inform a clinical decision in favor of one therapy over another. For the PFS sub-
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challenge, we computed Harrell’s concordance index (C-index) of PFS and model 

predictions as a basal metric (BM) calculated in each arm.30 We used the C-index in the 

OS sub-challenge after first correcting for potential effects caused by patient crossover 

from the chemotherapy arm to the nivolumab arm in CheckMate 026.31 For the BOR 

sub-challenge, the BM was the receiver operating characteristic (ROC) area under the 

curve (AUC) of the model predictions in each arm.  

For each sub-challenge, the primary metric (DSS) was the difference in squared scaled 

BM between the nivolumab arm and chemotherapy arm, where ������ �	
� �  2 �

�	
 � 0.5� (Table 1, Supplementary Figure 1).32,33 Models that performed well in the 

nivolumab arm and randomly in the chemotherapy arm had positive primary scores. 

Models that performed well in the chemotherapy arm but randomly in the nivolumab arm 

had negative primary scores. Models that performed the same in each arm had a score 

of 0. Squaring of the BM allowed us to accommodate models that predicted well in the 

negative direction as good predictors.  

A team’s model performance was determined in each sub-challenge. To be eligible for 

top-performing status, a model had to outperform the TMB baseline model based on the 

primary metric (Bayes factor relative to TMB baseline model, KTMB > 3, see 

Supplementary Methods 2). A description of baseline models and published reference 

models is provided in Supplementary Tables 2 and 3. For models meeting this criterion, 

we computed KDSS_Max, the Bayes factor relative to the highest primary metric in that 

sub-challenge. Models with KDSS_Max < 3 were considered tied with the highest scoring 

model. The BM from the nivolumab arm was used for tie-breaking. If multiple tied 
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models had tie-breaking scores close to the best tie-breaking score, they were included 

as top-performers for the sub-challenge.  

Results  

Overall Participation in This Challenge 

Fifty-one teams and eight individuals made at least one valid submission to the 

Challenge, with 417 models submitted across the three sub-challenges. Top-performing 

model descriptions are available on the Challenge website, Supplementary Methods 1, 

and Table 2. Author teams’ contributions to their respective model are reported in the 

author teams’ contribution section of the Supplement. Top-performing models 

outperformed the 14 comparator models for each sub-challenge.  

Prediction of Progression-Free Survival 

In the PFS sub-challenge, the Netphar and I-MIRACLE models outperformed the TMB 

baseline model, achieving C-index DSS of 0.19 and 0.087, respectively (Figure 2A). 

The Netphar model was based on a decision tree positing that high TMB (≥ 243 

missense mutations) was necessary but not sufficient to induce a response to 

nivolumab, and that tumor cell (TC) % PD-L1 expression became relevant only when 

TMB was high (Figure 2B; Supplementary Methods 1). 

In the nivolumab arm of CheckMate 026, patients with Netphar scores in the upper 

tertile had longer median PFS (10.8 months) than patients with scores in the middle and 

lower tertiles (3.5 months), whereas in the chemotherapy arm, patients with scores in 

the middle and lower tertiles had slightly longer median PFS (7.1 months) than patients 
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with scores in the upper tertile (5.4 months) (Figure 2C). Netphar scores in the upper 

tertile were associated with improved median PFS (16.3 months) in the nivolumab + 

ipilimumab arm of CheckMate 227 compared with scores in the middle and lower tertiles 

(2.8 months). In the chemotherapy arm of CheckMate 227, patients with scores in the 

upper tertile had similar median PFS (5.8 months) to patients with scores in the middle 

and lower tertiles (4.6 months) (Figure 2D).  

Prediction of Overall Survival 

In the OS sub-challenge, three models had higher C-index DSS than baseline models, 

including TMB and PD-L1, with I-MIRACLE, FICAN-OSCAR, and DukeLKB1 achieving 

DSS of 0.050, 0.046, and 0.032, respectively (Figure 3A). Although the @jacob.pfeil 

model had the highest DSS (0.0721), bootstrapped estimates of performance for that 

model showed substantial variation. The I-MIRACLE model gave patients a score of 1, 

2, or 3 based on their TMB and PD-L1 values (Figure 3B and Table 2). 

In the nivolumab arm of CheckMate 026, patients with I-MIRACLE scores of 3 had 

better median OS (not reached) than patients with scores of 2 (14.1 months) or 1 (11.8 

months), whereas in the chemotherapy arm, OS was similar in all patients regardless of 

I-MIRACLE score (15.2, 11.7, 16.9 months with a score of 1, 2, and 3, respectively) 

(Figure 3C). In CheckMate 227, I-MIRACLE scores of 3 were associated with prolonged 

median OS (44.3 months) in the nivolumab + ipilimumab arm compared with scores of 2 

(14.3 months) or 1 (16.7 months). OS was similar in the chemotherapy arm regardless 

of the score (8.5, 10.7, 12.9 months with a score of 1, 2, and 3, respectively) (Figure 

3D).  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 8, 2022. ; https://doi.org/10.1101/2022.12.05.518667doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.05.518667


  17 

Prediction of Best Overall Response of Progressive Disease 

Four models in the BOR sub-challenge surpassed the performance of all baseline 

models. The DSS of ROC-AUC was 0.055 for cSysImmunoOnco, 0.052 for Aginome-

Amoy, 0.049 for Team TIDE, and 0.039 for FICAN-OSCAR (Figure 4A). The 

cSysImmunoOnco model applied regularized multi-task linear regression to model 

hallmarks of anticancer immune response based on quantitative descriptors of the 

tumor microenvironment and TMB (Figure 4B). 

The ROC-AUC with the cSysImmunoOnco model was higher in the nivolumab arm of 

CheckMate 026 (0.626) and nivolumab + ipilimumab arm of CheckMate 227 (0.593) 

than in the chemotherapy arm of CheckMate 026 (0.547) or the chemotherapy arm of 

CheckMate 227 (0.465) (Figure 4C and 4D).  

Model Performance  

Several models had similar or better performance in CheckMate 227 than in CheckMate 

026 (Supplementary Figure 2). Netphar was the top-performing model for PFS 

prediction in the nivolumab arm of CheckMate 026 and in the nivolumab + ipilimumab 

arm of CheckMate 227. The Netphar model had good predictive accuracy for OS in the 

nivolumab + ipilimumab arm of CheckMate 227. The I-MIRACLE model had good 

predictive accuracy for PFS in CheckMate 026 (Supplementary Table 6). The 

cSysImmunoOnco model did not have good predictive accuracy for PFS or OS in 

CheckMate 026. 
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Gene Signatures 

Multiple teams (cSysImmunoOnco, I-MIRACLE, Team TIDE, and FICAN-OSCAR) 

leveraged publicly available gene expression data to train the models and deemed the 

expression of a select assortment of genes important (Supplementary Methods 3). The 

DukeLKB1 six-feature model included a validated transcriptional signature of STK11 

functional loss as a predictive feature.34 Among the models relying on gene expression 

information, the cSysImmunoOnco model used the expression of > 100 genes, whereas 

FICAN-OSCAR relied on five genes (Supplementary Figure 3A). A total of 140 genes 

ranked important by various models were selected as seeds for downstream analysis. 

Additional genes that were highly correlated to the seed genes (correlation > 0.85) were 

included to form a set of 403 genes grouped into three clusters using hierarchical 

clustering (Supplementary Figure 3B). Analysis of the three clusters showed the 

enrichment of three main mechanisms. The first cluster represented pathways relevant 

to tumor intrinsic cell-cycle dysregulation (Supplementary Figure 3Ci, Di). The second 

cluster included pro-inflammatory immune signatures related to interferon-gamma 

signaling and antigen presentation (Supplementary Figure 3Cii, Dii). The third cluster 

included immunosuppressive signatures related to interleukin-10 signaling. The P 

values associated with the third cluster were not small, suggesting weak enrichment, 

likely due to the small cluster size (Supplementary Figure 3Ciii, Diii). These results show 

an association of the top predictive genes from the benchmarked models with well-

established pathways related to cell-cycle dysregulation and pro-inflammatory immune 

response. 
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Discussion  

Studies reporting associations with ICI response in NSCLC have been limited by small 

sample sizes from single ICI treatment arms.15,17,18 This Challenge addressed these 

shortcomings by using two large and well-characterized phase III RCTs and by 

comparing predicted responses between ICI- and chemotherapy-treated arms, thereby 

distinguishing treatment response prediction from prognostic effects. The model-to-data 

framework was an important characteristic of this Challenge. While participants received 

limited feedback with this paradigm during model development, which prevented model 

refinement, this ensured an unbiased and reproducible assessment of the Challenge 

models.19 The model-to-data framework could be made accessible to support evaluation 

of in silico predictors using various datasets while maintaining data privacy. This study 

established a robust standard for researchers aiming to identify biomarkers predictive of 

ICI efficacy. We expect that future Challenges will support efficient biomarker discovery 

across multiple contexts. 

Participants integrated prior knowledge of ICIs with modeling methods like decision 

trees and regularized regression, additive models with hand-crafted weights, and 

decision trees with additive models. Preliminary attempts to aggregate models did not 

show improvements over individual models. While submitted models significantly 

outperformed TMB and PD-L1 as univariate predictors, most of the top-performing 

models included both variables, sometimes combined with gene expression signatures 

such as ICR or a proliferation signature, which reflected the clinical importance of TMB 

and PD-L1. This aligns with the observations obtained in tumor types, including head 

and neck squamous cell carcinoma (HNSCC) and melanoma, in which a T-cell–
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inflamed gene expression profile (similar to ICR) and TMB predicted PFS in patients 

receiving pembrolizumab.10 Likewise, a combined assessment of TMB and an 

inflammatory signature predicted BOR, PFS, and OS in patients with advanced 

melanoma receiving nivolumab or nivolumab + ipilimumab.35 A high ICR score predicted 

survival or response in patients with multiple tumor types treated with ICIs.13 

These results indicate that a combination of PD-L1, TMB, and immune gene signatures 

might be able to identify a subgroup of patients with NSCLC likely to respond to ICI and 

could be used for the design of a prospective phase III trial or to guide treatment choice. 

There is no single ‘magic bullet’ biomarker or model-building approach to predict 

response to ICIs. The biomarker content of top-performing models, as well as the 

exploration of their gene signature content, reinforce the need to assess tumor biology, 

tumor immunogenicity, and immune system status to identify patients most likely to 

benefit from ICI treatment. However, top-performing models differed across sub-

challenges, suggesting that composite models have different predictive potential, 

depending on the clinical end point assessed. For example, TMB and PD-L1 seem 

important for the prediction of PFS and OS, confirming previous studies,36 while 

mechanisms such as apoptosis, T-cell cross talk, and adaptive immune resistance 

seem important for the prediction of response. Future precision medicine approaches 

will benefit from the exploration and development of targeted composite biomarker 

strategies.  

The models identified may be generalizable to ICI datasets other than first-line 

treatment in metastatic NSCLC. Contributing teams used training datasets from other 

tumor types (melanoma or HNSCC), and the top-performing models in CheckMate 026 
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were validated in CheckMate 227 with different primary end points. These observations 

suggest that this approach may provide a blueprint to support modeling initiatives in 

diverse tumor types.  

A possible limitation of this study is that TMB, frequently used in the submitted models, 

may be inferred from DNA or RNA sequencing data and is a proxy for tumor 

‘foreignness’ but does not capture neoantigen clonality and abundance or non-canonical 

neoantigens generated from other tumor aberrations.37,38 Data such as T-cell/B-cell 

receptor repertoire, tobacco use, ECOG PS, age, and sex are not readily available in 

public datasets, participants did not always use them, and their role in predicting 

response to ICIs needs to be explored further. NSCLC is a genetically heterogeneous 

disease39, and specific subpopulations may differ in optimal biomarkers predictive of 

therapy response. While transcriptional signatures predictive of functional STK11 and 

KEAP1/NFE2L2 alterations were used in some models, integration of transcriptional 

phenotypes with fuller exome datasets across larger cohorts will be necessary to 

discover these subtype-specific biomarkers. Other limitations were the similarity of PFS 

and OS between the nivolumab and chemotherapy treatment groups of CheckMate 

026, and the exclusion of patients with PD-L1 expression < 1% in CheckMate 026. 

Although clinical and molecular data sets from both trials are large and rich, 

ascertainment of genomics data was incomplete because of logistical limitations. When 

the CheckMate 026 and 227 studies were conducted, chemotherapy was the standard 

of care; the current standard is chemotherapy plus ICI.40 The models identified here 

should be tested in the context of this new standard.  
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This pioneering study showed that a crowdsourced approach could successfully identify 

clinical and translational characteristics predictive of ICI efficacy. This analysis improves 

the understanding of the mechanisms of tumor sensitivity and resistance to treatment, 

which will support the development of therapies for patient subpopulations unlikely to 

benefit from current ICI regimens. It provides a roadmap for successful partnership 

between academic and industry scientists that allows for robust, reproducible biomarker 

testing while protecting patient data and incentivizing collaboration. We hope that the 

DREAM Challenge framework will be used to analyze data from many phase III trials, to 

speed the development of clinically actionable biomarkers and improve patient 

outcomes. 
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Figures and tables 

FIG 1. Challenge design. ICI, immune checkpoint inhibitor; PD-L1, programmed death 

ligand 1; TCR, T-cell receptor; TMB, tumor mutational burden. 
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FIG 2. Prediction of PFS with submitted models. (A) Bootstrapped estimates of 

model performance in CheckMate 026 (boxes are bound by the 25th and 75th 

percentiles). (B) Decision tree summarizing the Netphar model. (C) Netphar 

performance in the chemotherapy and nivolumab arms of CheckMate 026. (D) Netphar 

performance in the chemotherapy and nivolumab + ipilimumab arms of CheckMate 227. 

BL, baseline; C-index, concordance index; DSS, difference in squared scaled basal 

metrics; PFS, progression-free survival; PD-L1, programmed death ligand 1;  

TMB, tumor mutational burden. 
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FIG 3. Prediction of OS with submitted models. (A) Bootstrapped estimates of model 

performance in CheckMate 026 (Boxes are bound by the 25th and 75th percentile). (B) 

Classification principle of the I-MIRACLE model. (C) I-MIRACLE performance in the 

chemotherapy and nivolumab arms of CheckMate 026. (D) I-MIRACLE performance in 

the chemotherapy and nivolumab + ipilimumab arms of CheckMate 227. BL, baseline; 

C-index, concordance index; DSS, difference in squared scaled basal metrics;  

ICR, immunologic constant of rejection; OS, overall survival; PD-L1, programmed death 

ligand 1; TMB, tumor mutational burden.  
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FIG 4. Prediction of BOR of PD with submitted models. (A) Bootstrapped estimates 

of model performance in CheckMate 026 (boxes are bound by the 25th and 75th 

percentiles). (B) Principle of the cSysImmunoOnco model. (C) cSysImmunoOnco model 

performance in CheckMate 026 and (D) CheckMate 227. The grey dotted line is the line 

of non-determination. AUC, area under the curve; BL, baseline; BOR, best overall 

response; DSS basal metrics, difference in squared scaled basal metrics;  

EaSIeR, estimate systems immune response; ICI, immune checkpoint inhibitor; ICR, 

immunologic constant of rejection; MSI, microsatellite instability; NSCLC, non-small cell 

lung cancer; OS, overall survival; PD, progressive disease; PD-L1, programmed death 

ligand 1; TMB, tumor mutational burden.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 8, 2022. ; https://doi.org/10.1101/2022.12.05.518667doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.05.518667


  36 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 8, 2022. ; https://doi.org/10.1101/2022.12.05.518667doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.05.518667


  37 

 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted December 8, 2022. ; https://doi.org/10.1101/2022.12.05.518667doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.05.518667


  38 

TABLE 1. Challenge Questions and Metrics Used for Performance Evaluation21 

Sub-challenge Challenge Question BM Primary Metrica for Performance 

Evaluation 

PFS  

(Sub-challenge 1) 

PFS/OS sub-challenges: Predict 

response to nivolumab, in terms of 

PFS/OS, via an immune checkpoint-

specific model using clinical, 

demographic, and gene expression 

data 

PFS/OS Harrel’s C-

index 

DSS BM of PFS/OS between the 

nivolumab and chemotherapy arms 
OS 

(Sub-challenge 2) 

BOR 

(Sub-challenge 3) 

BOR sub-challenge: Predict which 

patients will not respond and have a 

BOR of PD 

ROC-AUC DSS BM of BOR between the 

nivolumab and chemotherapy arms 

Abbreviations: AUC, area under the curve; BM, basal metric; BOR, best overall response; C-index, concordance 

index; DSS BM, difference in squared scaled basal metrics; OS, overall survival; PD, progressive disease; PFS, 

progression-free survival; ROC, receiver operating characteristic. 

aThe computing of the primary metric from the BM is shown in Supplementary Figure 1. 
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TABLE 2. Description of Top-Performing Models 

Model Name Model Description 

Aginome-Amoy 

Top-performer in 

the BOR sub-

challenge 

A rule-based model was generated using patients stratified into three groups based on 

their PD-L1 and TMB expression scores: 

Group 1: PD-L1 score below median 

Group 2: PD-L1 score above median and TMB score below median 

Group 3: Both PD-L1 and TMB expression scores above median 

The following heuristic rules were used to decide the ranking of samples: 

A. Group 3 > Group 1 > Group 2 

B. Within Group 3, the ranking of samples was based on the following score: 

Score_{response} = TMB_{norm} + 2 * PD-L1_{norm} 

C. Within Group 1, the ranking of samples was based on the following score: 

Score_{response} = TMB_{norm} + PD-L1_{norm} 

D. Within Group 2, the ranking of samples was based on the following score: 

Score_{response} = TMB_{norm} – PD-L1_{norm} 

cSysImmunoOnco 

Top-performer in 

the BOR sub-

challenge 

A score of immune response was computed for each patient using EaSIeR41, which 

makes use of elastic-net regularized multitask linear regression models trained on TCGA 

data using quantitative descriptors of the TME as model input and 10 published 

transcriptomic signatures of immune response as model output. The quantitative 

descriptors of the TME included relative abundances of different immune cell types,42 

scores of pathway43 and transcription factor activities,44 and scores of inter-cellular 

communication and were derived by combining prior knowledge about the tumor 

microenvironment and patients’ transcriptomics data. The models were fine-tuned by 

associating penalties with markers of tumor foreignness based on TMB, wherever 

available, or MSI status estimated using an RNA-seq based signature. 

DukeLKB1 

Top-performer in 

the OS sub-

challenge 

A model with six derived features (TMB, PD-L1, 4-gene inflammatory signature, LKB1 

loss signature, NRF2 activation signature, and neuroendocrine differentiation signature) 

was generated.45,46 

The scores included in the model were calculated as follows: for TMB and PD-L1 

components, tumors with respective phenotype > 67th percentile were given a score of 1, 
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and remaining tumors were scored 0. The 4-gene inflammatory signature and the three 

tumor-intrinsic gene expression variables were taken as means of the scaled expression 

scores for the corresponding signature genes. Because we anticipated differences in 

gene expression and distribution according to tumor histology, the dataset was first 

separated into squamous and non-squamous subsets, with scaling and averaging across 

genes performed separately between the two groups. 

FICAN-OSCAR 

Top-performer in 

the OS sub-

challenge 

A single linear regression model using a novel Optimal Subset CArdinality Regression 

(oscar) L0-quasinorm regularization was generated using the R package available at 

https://github.com/Syksy/oscar/releases/tag/v0.6.1.47,48 The model is a linear product of 

the data matrix X and regularized beta coefficients b. Gene expression signature 

(CUSTOM FOPANEL) was estimated using a custom gene panel analyzed with GSVA 

(with the parameter mx.diff = TRUE). Other variables included in the model were sex, 

histology (squamous vs not), smoking history, ECOG performance status (0 vs not), TMB, 

and PD-L1. A description of each coefficient is available in Supplementary Methods 1. 

FICAN-OSCAR model equation: 

Y=−0.693×CUSTOM_FOPANEL−0.357×isTMBhigh−0.105×isMale−0.198×isSquamous−0

.05×isSquamous&Above5PDL1−0.223 ×isEversmoker−0.105×isECOG0 

@jacob.pfeil 

Top-performer in 

the OS sub-

challenge 

The AbbVie Taux model used an unbiased feature engineering strategy to identify gene 

expression ratios that differentiate anti–PD-1 responders from non-responders. The 

reason for using gene expression ratios was to down-weight the effect of response 

markers by a factor proportional to resistance marker expression level. Cross-validation 

and regularization were used to mitigate overfitting on the small number of available 

training samples. An SVM with radial basis function kernel identified a non-linear 

boundary separating the responder ratio values from non-responder values. Predictive 

gene expression ratios balanced markers of response (eg, immune cell markers, Type-I 

interferon, HLA presentation) with markers of resistance (eg, proliferation and inhibitors of 

immune recognition) 

I-MIRACLE 

Top-performer in 

the OS sub-

A rule-based prediction model was generated based on classifying TMB and PD-L1 as 

high or low as follows: 

• TMB: TMB values were classified as high if greater than or equal to the upper tertile 
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challenge and as low otherwise. When TMB was missing, the proliferation score49 was used as 

a proxy, as it correlates highly with TMB in NSCLC (see prediction of OS sub-

challenge) 

o The proliferation score was calculated for each patient using the yaGST R 

package (http://github.com/miccec/yaGST).50 Patients with missing TMB 

were classified as TMB high if their proliferation score was greater than or 

equal to the upper tertile and as TMB low otherwise  

• PD-L1: Patients were classified as PD-L1 high if their PD-L1 value was ≥ 50 and PD-

L1 low otherwise. When PD-L1 values were missing, the ICR score was used instead  

o The ICR score was derived from a 20-gene signature that reflects the 

presence of a Th1/cytotoxic immune response.13 The ICR score was 

calculated for all patients using the yaGST R package. Patients with missing 

PD-L1 were classified as PD-L1 high if their ICR score was greater than or 

equal to the upper tertile and as PD-L1 low otherwise 

• Patients were given a I-MIRACLE score of 1, 2, or 3 based on their TMB and PD-L1 

values, as shown in Figure 3B and in Supplementary Methods 1. If TMB was high (or 

the proliferation score was high when TMB was missing) and PD-L1 expression was 

high (or the ICR score was high when PD-L1 was missing), we gave a score of 3. A 

score of 1 was given when both TMB/proliferation score and PD-L1/ICR were low. A 

score of 2 was given otherwise 

Netphar 

Top-performer in 

the PFS sub-

challenge 

A decision tree-based model was generated using TMB high (≥ 243) or low (< 243) as a 

first branching point (prior knowledge: TMB is necessary but not sufficient for triggering 

the checkpoint inhibitor response) and the expression of PD-L1 in the TMB high branch 

as the second branching point. The model was designed to be conservative on the TMB 

low branch with all predictions equal to zero.  

Model equation: Y = 10 × TMB_binarized + TMB_binarized × PD-L1 

Team TIDE 

Top-performer in 

the BOR sub-

The model integrated TIDE22 with other clinical phenotypes (eg, PD-L1, TMB, and 

smoking) by the rank aggregation method to enhance the prediction performance on 

patient survival and response. Treatment-naive ICI clinical trial data from the TIDE 

database and late-stage chemotherapy patients of LUAD, LUSC, and SKCM from TCGA 
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challenge were used as the training data. C-index values for survival with each feature within 

individual cohort and rank features were calculated according to a custom scoring metric. 

Features such as TMB, PD-L1, CTL, SMOKE, Dysfunction, Exclusion, 

T.cell.CD4.non.regulatory from QUANTISEQ,42 B-cell naive from xCell,51 IFNG signature, 

and antigen presentation by MHC-I were selected in the model prediction. 

Abbreviations: BOR, best overall response; CTL, cytotoxic T lymphocytes; EaSIeR, estimate systems immune 

response; ECOG, Eastern Cooperative Oncology Group; GSVA, gene set variation analysis; HLA, human leukocyte 

antigen; ICI, immune checkpoint inhibitor; ICR, immune constant of rejection; IFNG, interferon gamma; LUAD, lung 

adenocarcinoma; LUSC, lung squamous cell carcinoma; MHC-I, major histocompatibility complex I; MSI, 

microsatellite instability; NRF2, nuclear factor erythroid 2–related factor 2; NSCLC, non-small cell lung cancer; OS, 

overall survival; PD-1, programmed death-1; PD-L1, programmed death ligand 1; PFS, progression-free survival; 

RNA-seq, RNA sequencing; SKCM, skin cutaneous melanoma; SVM, Support Vector Machine; TCGA, The Cancer 

Genome Atlas; TIDE, tumor immune dysfunction and exclusion; TMB, tumor mutational burden; TME, tumor 

microenvironment. 
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