
i
i

“output” — 2020/11/21 — 10:10 — page 1 — #1 i
i

i
i

i
i

Briefings in Bioinformatics
doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
Manuscript Category

OUP_First_SBk_Bot_8401-eps-converted-to.pdf

Subject Section

A review of COVID-19 biomarkers and drug targets:
resources and tools
Francesca P. Caruso 1,2,†, Giovanni Scala 3,†, Luigi Cerulo 1,4,∗ and Michele
Ceccarelli 1,2,∗

1 Biogem, Istituto di Biologia e Genetica Molecolare , Via Camporeale, Ariano Irpino, Italy
2 Department of Electrical Engineering and Information Technology, University of Naples "Federico II", Via Claudio, 82100, Naples, Italy
3 Department of Biology, University of Naples "Federico II", Via Monte Sant’Angelo, 82100, Naples, Italy
4 Department of Science and Technology, University of Sannio,Benevento, Italy

∗To whom correspondence should be addressed.
† These authors contributed equally to this work.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

The stratification of patients at risk of progression of COVID-19 and their molecular characterization
is of extreme importance to optimize treatment and to identify therapeutic options. The bioinformatics
community has responded to the outbreak emergency with a set of tools and resource to identify biomarkers
and drug targets that we review here. Starting from a consolidated corpus of 27570 papers, we adopt Latent
Dirichlet Analysis to extract relevant topics and select those associated with computational methods for
biomarker identification and drug repurposing. The selected topics span form Machine Learning and AI
for disease characterization to vaccine development and to therapeutic target identification. Although the
way to go for the ultimate defeat of the pandemic is still long, the amount of knowledge, data and tools
generated so far constitute an unprecedented example of global cooperation to this threat.
Contact: lcerulo@unisannio.it, michele.ceccarelli@unina.it
Supplementary information: Supplementary data are available at Briefings in Bioinformatics online.

Key points
• A vast amount of literature about COVID-19 biomarkers has been

already published so far, automatic text categorization methods are
useful to identify key topics

• The analysis of a corpus of 27000 papers resulted in 36 topics, five of
them related to biomarker discovery and drug target identification

• Selected topics span form Machine Learning and AI for disease
characterization to vaccine development and to systems biology for
therapeutic target identification.

• We include an up to date catalog of public transcriptomics and
proteomics dataset available to the computational biology community
for discovery of biomarkers and disease characterization

1 Introduction
The crisis generated by the spread of the Severe Acute Respiratory
Syndrome CoronaVirus 2 (SARS-CoV-2) and the corresponding COVID-
19 disease was declared a pandemic by the World Health Organization
(WHO) on March, 11th 2020. The origin of SARS-CoV-2 was traced
to the Huanan Seafood Wholesale Market in the city of Wuhan, China.
The causative pathogen was identified as a betacoronavirus with high
sequence homology to bat coronaviruses (CoVs) using angiotensin-
converting enzyme 2 (ACE2) receptor as the dominant mechanism of
cell entry [1]. Human-to-human transmission events were confirmed with
clinical presentations ranging from no symptoms to mild fever, cough, and
dyspnea to cytokine storm, respiratory failure, and death. The scientific
community responded to the crisis with an extraordinary effort involving
thousands of scientists and hundreds of labs worldwide. This produced
a vast amount of biological data allowing the computational biology
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community to characterize the molecular bases of the diseases, the spread
and evolution of the virus, and the identification of potential drugs.

The identification of biomarkers for stratification of patients at risk
of progression of COVID-19 and their molecular characterization is of
extreme importance to optimize treatment and to identify therapeutic
options.

We refer to a biomarker as a measurable characteristic – e.g.
expression level of a group of genes – used as an indicator of normal
biological processes, pathogenic processes, or responses to an exposure
or intervention [2, 3]. Depending on the context of use, a biomarker can
be categorized as: susceptibility/risk, diagnostic, monitoring, prognostic,
predictive, pharmacodynamic/response, and safety biomarker. It is
important to distinguish between the prognostic biomarkers, that are useful
to identify patients more likely to have a particular outcome independently
from treatment, and predictive biomarkers that involve a comparison of a
treatment to a control in patients with and without the biomarker.

Several prognostic COVID-19 biomarkers predicting disease severity
have been already validated in clinical settings [4]. Among biomakers
that segregate severe from non severe patients, obtained by retrospective
analysis of large cohorts, of particular interest are those associated to
dysregulation of immune response. Infection-related biomarkers, such as,
inflammatory cytokines TNF�, interleukines IL-2R and IL-6, and other
blood cell counts are seen in much higher dosage in severe groups with
respect to the non-severe group [5], whereas the platelet count tends to
be significantly decreased in severe cases [6]. Genomewide association
studies have also identified a gene cluster on chromosome 3 as a the major
genetic risk factor for severe SARS-CoV-2 infection and hospitalization
[7, 8]. This genomic segment of 50 kb is inherited from Neanderthals and is
carried by about 50% of people in South Asia and and about 16% of people
in Europe today [9]. Other prognostic biomarkers of disease progression
and mortality are related to cardiovascular damages involved in COVID-19
and make use of the cardiac troponin [10] or to the occurrence of chronic
kidney diseases where an increase of creatinine levels is observed in severe
patients [11]. Other than these clinical biomarkers, there is already a vast
literature of molecular biomarkers that characterize the disease associated
with SARS-CoV-2 viral infection and that can be exploited to identify
therapeutic targets.

In this paper we focus on Bioinformatics resources, tools, and
approaches connected to molecular COVID-19 biomarkers. To this aim
we needed to address the vast amount of information produced by the
recent explosion of COVID-19 related scientific literature.

The paper is organized following the induced set of biomarker-related
topics as follows: the next Section describes the methods adopted to mine
COVID-19 related scientific literature and to extract relevant topics; in
Section 5 we report Machine Learning tools developed to characterize
COVID-19 disease, especially from the image scans; Section 6 describes
the relevant molecular datasets available for the characterization of
COVID-19 biomarkers from genomics and proteomics profiling; Section 7
focuses on immune repertoire sequencing and antibody isolation; Section
8 collects methods and tools related to vaccine development; and finally
Section 9 reports approaches and tools for the discovery of therapeutic
targets.

2 Methods adopted to mine COVID-19 literature

2.1 Topic Modeling

We adopted Latent Dirichlet Analysis to extract relevant topics from the
over 27K research papers, appeared in the last ten months, and indexed in
PubMed or uploaded on preprint servers, such as bio and med rxiv [12]. The
overall procedure implemented in Python and R, including details about

the adopted analysis, are reported at: https://github.com/bioinformatics-
sannio/covidLiterature. We started with a set of 27894 articles downloaded
on 20, June, 2020 from LitCovid, a curated open-resource literature of
PubMed research papers related to COVID-19 [13], and from the COVID-
19/SARS-CoV-2 collection of medRxiv and bioRxiv preprint servers.
Document text content, composed by joining article’s title and abstract,
was tokenized, stemmed, and filtered by stopwords. Duplicates, due to
PubMed edited paper available also on preprint servers, have been removed
by comparing vectors of term frequencies with cosine distance obtaining a
consolidated corpus of 27570 papers. In this corpus we discovered an
optimal set of 36 topics showing the lowest perplexity (Supplemental
Figure 1). Among them we selected 5 topics, topic #0, strongly related
to computational models, and 4 topics related to biomarker research
(Figure 1)From the consolidated corpus we selected papers with a content
associated with such a set of topics. Specifically, we considered papers
not distributed on many topics (i.e. Shannon Entropy less than half of its
maximum 1

2
log2( 1

36
)) and having one of the biomarker related topics

shown in (Figure 1, Table S1) as the top most probable. The final set of
3032 papers, we made available as Table S2, were manually evaluated and
the most relevant discussed in this work.

2.2 Attention of studied elements

COVID-19 literature can also be mined to extract valuable information
regarding molecular elements (i.e. gene, proteins, etc..) that received more
attention in this particular subset of scientific literature. Here we considered
gene attention and reported two different analyses: the first showing genes
that received more attention in the selection of manuscripts reported in
this review compared to all manuscript published in the same time-frame
and the second showing genes that received more attention in the first half
of 2020 (the pandemic time-window) compared to the whole 2019. The
concept of attention can be formulated in different ways, here we choose
the number of manuscripts citing a gene as a proxy for the attention received
by the gene.

The association between genes and citing manuscripts can be obtained
by the NCBI NIH gene2pubmed table [14] while the temporal information
associated to manuscript was obtained using the NCBI NIH PMC-ids table
[15] and the RISmed R package [16]. For the analyses presented in this
review, we only considered human, mouse, rat and SARS-CoV-2 genes by
filtering the gene2pubmed table for accession IDs of genes annotated for
these species and mapping the corresponding ENTREZ gene IDs to gene
symbols. Given a set of manuscripts, we computed the attention score of
a given gene in that set, by summing up the number of times it was cited
the manuscripts from the set.

For the first analysis, we select 15,652 gene/manuscript associations
from the filtered gene/manuscript table, covering 2904 manuscripts
published from the 1/1/2020 to 06/17/2020. This latter set of articles
was intersected with the selection of COVID-19 manuscripts provided
here, generating a partition of 182 COVID-19 gene citing manuscripts
and 2722 non COVID-19 gene citing manuscripts. For each symbol we
than compared the number of times COVID-19 manuscripts cited the gene
with the corresponding number of citations in non COVID-19 manuscripts
and computed it’s statistical enrichment by using a Fisher’s exact test and
finally correcting all p-values with FDR correction.

For the second analysis, we selected 76,658 gene/manuscript
associations from the gene/manuscript table, with 16,480 associations
covering 3,324 manuscripts published during the year 2020 and 60,178
gene/manuscript associations from the same table, covering 20,208
manuscripts published in the year 2019. We then selected the genes being
cited in at least 5 manuscripts during 2020 and ranked them based on
their attention score in each considered year (2019 and 2020). We defined
�–rank as the difference (positive or negative) in rank between the two

https://github.com/bioinformatics-sannio/covidLiterature
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years as a measure of gain or loss of attention for each gene between
2019 and 2020 was . We assigned an empiric p-value to the� –rank of
each gene using a bootstrap procedure (1000 iteration) where the same
procedure describe above was applied to a random selection of 16,480
gene/manuscript associations and shuf�ing of gene IDs with respect to
manuscripts in each realization.

3 Genes/proteins with high attention score in the
COVID-19 infection process

Genes that received signi�cant attention in the subset of scienti�c literature
considered are shown in Figure 1 A-B, both in terms of enrichment of
attention score and signi�cant� –rank, include important genes involved
in SARS-CoV-2 parthenogenesis (Figure 1 C). The main mechanism of
adhesion and viral entry into the cell involves the viral protein Spike
(S) which binds the human ACE2 receptor through its receptor-binding
domain (RBD) with a binding af�nity ten times higher than that of the
spike protein of the SARS virus. The very ef�cient cellular entry of SARS-
CoV-2 is also due to the action of the Furin enzyme, that is expressed in
signi�cant concentrations in the lung and activate the spike protein [17, 18].
Some recent evidence suggests that many other genes may contribute to
virus entry and are being studied as potential therapeutic targets in the
treatment of Coronavirus infections. For example, the host cell protease
TMPRSS2 acting as a primer for the spike protein [19, 20]; the membrane
protein DPP4 acts as a co-receptor of SARS-CoV-2 and is a key factor
for the hijacking and virulence in the respiratory tract [21]; the AAK1
gene is known regulator of the clathrin mediated endocytosis [22]. The
uncontrolled and excessive release of pro-in�ammatory cytokines and
chemokines (like IL-1� , IL-6, IL-12, CXCL8, CXCL9, CXCL10, IFNs,
TNF, etc.) is the most damaging and potentially fatal effect related to the
COVID-19 and therefore it is the subject of several studies. The IL-6 gene
is the main prognostic biomarkers since it plays a kay role in cytokine
storm, and high levels of this cytokine are associated with respiratory
failure and mortality risk [23]. Unfortunately, the ef�cacy of cell-mediated
immunity against SARS-CoV-2 is still unclear and many studies are aimed
at clarifying the role of T cells in the resolution of COVID-19 [24]. Some
recent evidence has shown an increase in the expression of the CD8 T
cell marker (CD8A) in COVID-19 patients to support hyper-activation of
cytotoxic T lymphocytes [25].

4 Main Topics in COVID-19 Biomarker research

We adopted a semiautomatic approach, based on topic analysis, to select
from the over 27K research papers, appeared from September 2019 and
indexed by PubMed or uploaded on preprint servers such as bio- and med-
rxiv, a manageable set of resources that can be manually revised. From the
overall corpus of documents, we induced 36 relevant topics, 5 of which
are associated to biomarkers and are depicted in Figure 2, whereas the
breakdown of the papers per topic is summarized in Table S1.

Topic #0 refers to the use of arti�cial intelligence (AI), in particular
deep learning approaches for the analysis of biomedical images, such as
Computed Tomography (CT) scans or ultrasonography (LUS) images,
to diagnose and predict the prognosis of COVID-19 patients. Topic #1
is related to the study of neutralizing antibodies and cellular immune
response to SARS-CoV-2 and focuses on the design of serological tests
to identify seroconversion prognostic biomarkers. Topic #20 is about drug
discovery and is speci�c to structural and functional analysis of SARS-
CoV-2 to identify therapeutic targets. Topic #27 is related to the discovery
of biomarkers that trigger an immune response and could be adopted for
vaccine development. Topic #33 encloses genome- and proteome-wide
studies with publicly available datasets, a valuable source of information
for biomarker discovery.

5 Machine Learning and AI for image-based
disease characterization

Imaging is the main tool for the identi�cation of patients with higher
risks of developing acute respiratory failure due to SARS-CoV-2 virus
pneumonia [26]. Lesion characteristics such as: number, size, density, and
bilateral and multi-lobar glass ground opaci�cations (mainly posteriorly
and/or peripherally distributed) are indicators of lung damage and
remaining lung reserve [27]. They are effectively used as biomarkers to
train an automatic diagnostic system or to assist the accurate diagnosis
of disease severity and to distinguish between normal and SARS-CoV-
2 virus pneumonia. In [28] the authors collected a dataset of 532,506
Computed Tomography (CT) scans from 3,777 patients for the purpose
of training a diagnostic system (Table 1) and showed that a convolutional
neural network, adapted from 3D ResNet-18, trained on lung-lesion maps,
obtained by different automatic segmentation algorithms, achieves 92.49%
accuracy, 94.93% sensitivity, 91.13% speci�city, and an AUC of 0.9797
[29]. The use of multiple features such as, texture, surface, volume
histogram, and intensity, has also been shown to improve the diagnostic
accuracy [30] of chest CT scans up to 93.9%. As an alternative to CT scans,
lung ultrasound (LUS) has been shown to be a more widely available,
cost-effective, safe and real-time imaging technique [31].

6 Virus and Host Genomics, Transcriptomics,
and Proteomics pro�ling

The genomic sequence of SARS-Cov-2 has 29903 nucleotides [1] and is
available with accession number NC_045512.2. It has 89.1% similarity
with a bat SARS-like coronavirus (CoV) isolate—bat SL-CoVZC45
(accession number MG772933) and is organized inreplicase ORF1ab
(21,291 nt),spike(3,822 nt),ORF3a(828 nt),envelope(228 nt),membrane
(669 nt) andnucleocapsid(1,260 nt). As of June 21th 2020 a total
number of 49,239 sequences have been deposited on GISAID EpiFlu
Database (www.gisaid.org) which is the main source of genomic data
associated with SARS-Cov-2 [32]. To get insight into the complex
pathogenesis caused by novel Coronavirus, sequencing of Single cells
(scRNA-seq), RNA (RNA-seq), Adaptive Immune Receptor Repertoire
(AIRR-seq), image datasets, and proteomic assay have been massively
adopted to unveil the characteristics of the immune response triggered in
patients affected by COVID-19. Single cell sequencing is often combined
with RNA or AIRR sequencing as the pulmonary microenvironment
and peripheral immune response allow to reveal potential mechanisms
underlying the pathogenesis of COVID-19 and the identi�cation of
diagnostic and therapeutic biomarkers. Most of data are available on public
databases, such as Gene Expression Omnibus (GEO) [33], Sequence Read
Archive (SRA) [34], European Nucleotide Archive (ENA) [35], European
Genome-phenome Archive (EGA) [36], and Genome Sequence Archive
(GSA) [37]. Single cell transcriptomic data can be interactively explored
through the Single Cell Portal [38]. Table 1 provides a curated list of
28 transcriptomic, 2 image datasets, and 6 proteomic studies, publicly
available datasets. The list contains 14 scRNA-seq studies derived from
peripheral blood mononuclear cells (PBMCs) (n = 8), nasopharyngeal
swabs and bronchial branches (n = 1), bronchoalveolar lavage �uid (BALF)
(n = 1), lung tissue (n = 1) in COVID-19 patients. There are also scRNA-seq
datasets of lung organoids (n = 2) and human cell lines infected with SARS-
CoV-2 (n = 3). Similarly, there are 9 RNA-seq studies that include datasets
of infected human cell lines (n = 4) and organoids (n = 3), nasopharyngeal
swabs (n= 1), BALF and PBMC (n = 1), and several tissue (i.e. lung,
heart, liver, kidney, bowel, skin, fat, marrow) (n = 2) from COVID-19
patients. The AIRR-seq datasets, including data of BCR, TCR, IGH, and
antibody sequencing were derived from PBMCs (n = 10) and BALF (n =
1) in COVID-19 patients.

www.gisaid.orh
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Table 1. Transcriptomics and proteomics datasets

# samples
Ref Data Availability Biotype COVID-19 Control Data Type

[39] GSE150728 Peripheral Blood Mononuclear Cells (PBMCs) 7 6 scRNAseq
[40] GSE148697 - pending hPSC-derived lung organoids na na scRNAseq
[41] pending SARS-CoV-2 infected human bronchial epithelial

cells
na na scRNAseq

[42] CRA002509 - pending Peripheral Blood Mononuclear Cells (PBMCs) 2 na scRNAseq
[43] EGAS00001004481 Nasopharyngeal and Bronchial 19 5 scRNAseq
[44] Under request Peripheral Blood Mononuclear Cells (PBMCs) 10 na scRNAseq
[45] pending Peripheral Blood Mononuclear Cells (PBMCs) 4 na scRNAseq
[46] CNP0001102 Peripheral Blood Mononuclear Cells (PBMCs) 16 3 scRNAseq

[47] GSE147507 SARS-CoV-2 infected human cell lines and Lung 23 2 RNAseq
[48] CRA002390 Bronchoalveolar Lavage Fluid (BALF) and Peripheral

Blood Mononuclear Cells (PBMCs)
7 3 RNAseq

[49] GSE152075 Nasopharyngeal 430 54 RNAseq
[50] GSE150392 SARS-CoV-2 infected iPSC-cardiomyocyte cells 3 3 RNAseq
[51] GSE150819 SARS-CoV-2 infected human bronchial organoids 6 9 RNAseq
[52] GSE150316 Various 83 5 RNAseq
[53] GSE149312 SARS-CoV-2 infected intestinal organoids 8 10 RNAseq

[54] PRJNA628125 Peripheral Blood Mononuclear Cells (PBMCs) 14 na AIRRseq
[55] PRJNA630455 Peripheral Blood Mononuclear Cells (PBMCs) 42 na AIRRseq
[56] PRJNA633317 Peripheral Blood Mononuclear Cells (PBMCs) 120 na AIRRseq
[57] web page at [58] Peripheral Blood Mononuclear Cells (PBMCs) 149 na AIRRseq
[59] web page at [60] Peripheral Blood Mononuclear Cells (PBMCs) na na AIRRseq
[61] pending Peripheral Blood Mononuclear Cells (PBMCs) na na AIRRseq
[62] PRJEB38339 Peripheral Blood Mononuclear Cells (PBMCs) 215 na AIRRseq

[63] GSE148729 SARS-CoV-1/2 infected human cell lines 167 na RNAseq + scRNAseq
[64] GSE151803 SARS-CoV-2 infected human cell lines, organoids and

Lung
12 9 RNAseq + scRNAseq

[65] pending Peripheral Blood Mononuclear Cells (PBMCs) na na AIRRseq + scRNAseq
[66] pending Peripheral Blood Mononuclear Cells (PBMCs) na na AIRRseq + scRNAseq
[67] EGAS00001004412 Peripheral Blood Mononuclear Cells (PBMCs) na na AIRRseq + scRNAseq
[68] GSE145926 Bronchoalveolar Lavage Fluid (BALF) 12 9 AIRRseq + scRNAseq

[28] web page at [69] Chest scan of COVID-19 patients and normal controls 1386 1105 CT images
[31] web page at [70] LUS images of COVID-19 patients and normal

controls
na na LUS images

[71] web page at [72] Infected human kidney derived cell lines na na interactome
[73] web page at [74] Infected human colon derived cell lines na na Translatome + Proteome
[75] Intact imex:IM-27901 Peripheral Blood Mononuclear Cells na na interactome
[76] web page at [76] Various na na Protein structures
[77] web page at [78] Various na na Protein structures
[79] IPX0002106000 and IPX0002171000 Blood serum 46 53 Proteomic and metabolomic

Proteomics datasets are created in this context to characterize the set
of SARS-CoV-2 encoded proteins and to investigate their interaction with
the human proteome during the different phases of the infection. In [71],
Gordonet al. recently developed a protein interaction map by expressing
all of the 29 SARS-CoV-2 proteins in human cells and then assessing
their af�nity with human proteins by means of af�nity-puri�cation mass
spectrometry, obtaining a list of 332 SARS-CoV-2-human protein-protein
interactions that is available as a supplementary �le at [72]. Bojkova
et al analysed human cell lines infected with SARS-CoV-2 [73] and
characterized their translatome and the proteome at different time points
after the infection and made this data-set available at [74]. In [75] Li
et al., by using genome wide yeast-two hybrid and co-immunoprecipitation
approach, identi�ed 58 distinct intra-viral protein-protein interactions. In

the same study, the authors studied the viral-host interactome by over-
expressing all the SARS-CoV-2 genes into HEK293 cells and de�ned a
list of 631 viral-host protein-protein. Interaction data from this work is
available in the IntAct database (imex:IM-27901).

Knowledge of the SARS-CoV-2 encoded proteins structure can be
exploited to search for molecules showing structural af�nity and hence
acting as potential inhibitors of these latter. Protein Data Bank is a public
resource collecting user deposited structures of all of the 29 COVID-
19-related PDB structures [76]. Using used model-validation metrics
Wlodawer et. Al. [77] de�ned a re�ned version of COVID-19-related
PDB structures present in Protein Data Bank and made them available
at [78]. As of July 2020, this repository hosts 285 SARS-CoV-2 protein
structures and 23 additional structures of other coronaviruses. A recent
study, based on the analysis of proteomic and metabolomic pro�les
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from COVID-19 patients identi�ed possible biomarkers related to the
severity of the pathology [79]. The machine learning-based approach
has highlighted important changes in the serum of COVID-19 patients
involving the deregulation of complement system processes, macrophage
and platelet activity, and metabolic suppression. All data are deposited in
ProteomeXchange Consortium (Table 1).

7 Immune repertoire sequencing and antibody
isolation

SARS-CoV-2 infection affects adaptive immunity, immune cell
architecture and function [80]. Exposure to viral antigens stimulates the
cellular immune response of T cells and the humoral immune response
of B cells which can be studied in detail through the Immune Repertoire
high-throughput sequencing. The analysis of the sequences of T and B
cells repertoires for different cohorts of patients, from non-hospitalized
infected patients to patients with severe symptoms, may reveal the nature
of protective versus detrimental B and T cell responses and can be be
used as a prognostic biomarker. For example, signi�cant highly clonal
T cell repertoires in active COVID-19 patients versus patients recovered
from COVID-19 without medical intervention has been recently reported
[62]. The Adaptive Immune Receptor Repertoire Community (AIRR-C)
has de�ned standards for sharing and interoperability of B-cell and T-cell
receptor repertories [81], and sequences of are being deposited in multiple
repositories such as [82] which (at the date of writing this paper) contains
178,190,149 sequences from 285 patients.

T and B cell sequencing is important for the development of
monoclonal antibodies against SARS-CoV-2, but also to determine the
optimal T cell engagement strategy for vaccine development. SARS-
CoV-2-reactive and neutralizing antibodies have now been isolated from
COVID-19 survivors. Neutralizing antibodies could block viral entry by
preventing the S protein from binding to host cell receptors, such as ACE2.
Neutralizing antibodies could also mimic receptor binding and prematurely
trigger fusogenic conformational changes in the S protein before it
engages ACE2. The Coronavirus Antibody Database, CoV-AbDab [83],
is a publicly available resource to query and download Coronavirus-
binding antibody sequences and structures. It actually contains 460
records. A recent study isolated 19 antibodies with high neutralizing
power from infected SARs-Cov-2 patients [84]. This collection includes
antibodies directed towards the spike protein RBD domain, which compete
strongly with the ACE protein and are promising candidates for vaccine
development, and non-RBD antibodies which are instead mainly directed
towards the NTD domain. The sequences of these 19 antibodies are
deposited on Genbank.

8 Vaccine development

Although several research groups around the world are engaged in the
development of a vaccine against SARS-CoV-2, currently there are not
approved treatments for humans.

Reverse vaccinology is a methodology that uses bioinformatics tools
and genomic data for the identi�cation of pathogen antigens [85]. In-
silico vaccine development improves the potential for successful vaccine
design reducing time and cost to identify the effective epitopes that could
trigger the immune response without causing disease [86]. Figure 3
shows a general work�ow of in-silico vaccine development, including
the main resources used in COVID-19 vaccine discovery so far. Initially,
amino acid sequences of proteins that are potentially antigenic or essential
for virus replication must be retrieved from sequence databases, such
as Genbank [87]. The nucleocapsid (N) protein of SARS-CoV-2 is
a suitable vaccine candidate because it is a crucial structural protein,

highly conserved with antigenic properties [88]. Also, other structural
and nonstructural proteins, such as the Membrane (M) protein, spike
glycoprotein (S), Open reading frame 3a (ORF3a), etc., are putative
antigenic targets in vaccine design [89]. The identi�cation of antigenic
proteins and prediction of T-cell and B-cell epitopes are major steps
in developing in silico-vaccine. The Supplemental Table S3 provides
a list of the main bioinformatics resources useful for the prediction of
MHC Class-I and II epitopes. Prediction tools for continuous B cell
epitopes and T cell epitope are very similar and include algorithms based
on: i) machine learning and arti�cial neural network (ANN) approaches
(i.e. NetMHC, NetMHCII, NetCTL, nHLAPred, BepiPred, MHC2Pred,
SVMHC, etc.); ii) the amino acid properties and secondary structure (i.e.
VaxiJen, MHCPred, Bcepred, SEPPA, etc.); iii) position-speci�c scoring
matrix (PSSM) matrix (i.e. RANKPEP). Instead, discontinuous B cell
epitope prediction employs resources based on 3D structure resolution of
the antigen (i.e. Discotope, ElliPro, etc.) Many other on-line tools are
also available to analyze the physiochemical properties, allergenicity, and
to predict secondary and tertiary structure of vaccine candidate (Figure
3). The EPV-CoV19, a candidate vaccine in the clinical trial phase,
was entirely designed using the iVax Toolkit [90], a web-based work
environment including several computational immunology tools to develop
epitope-driven in-silico vaccine.

9 Therapeutic target identi�cation

Biomarkers for drug repurposing (or drug targets) are molecular elements
that are part of the pathophysiologic mechanism of action of a disease.
In the context of viral infection, such elements are represented by: i)
viral targets, proteins encoded by the viral genome that are essential to
the infection process; ii) viral/host interactors, host proteins that directly
interact with viral proteins acting as entry-points for the infection process;
and iii) host response targets, host proteins not directly interacting with the
viral proteins but whose inhibition/activation is able to block the signaling
pathways that are essential for the infection process to succeed.

Table 2 shows a list of bioinformatics tools developed for therapeutic
target identi�cation that have been applied in the context of COVID-19
disease. Most of them have developed in different contexts (e.g. cancer)
and can be virtually applied to the targets categories described above. Each
of the proposed approach/tool is based on different input structures that
can be classi�ed in the following categories: i) Protein-protein networks
along with a selection of subsets of proteins of interest (e.g. COVID-19
direct interactors and drug targets); ii) transcriptomic networks inferred
from infected samples; and ii) proteins/ligands structure and composition.

9.1 Tools based on Protein-protein networks

In the case of viral infections, at least three pieces of information should
be modeled within the network structure: i) virus-host protein interactions,
ii) host protein-protein interactions and iii) drug-protein interactions.
Pure (unimodal) Protein-protein network based approaches consider only
proteins as nodes of the network and protein-protein interactions as edges.
In multi-modal networks, nodes can be proteins, drugs, and diseases, while
edges represent interactions among them (protein-protein, drug-protein,
drug-diseases, drug-drug, disease-protein, disease-disease). The basic idea
is that the closer are the drug targets to disease-related components (such
as viral-host interactors), the higher are the odds for the drug to affect
the adverse phenotype. A commonly used distance measure between
nodes over a graph is the length of the shortest path connecting them.
By extending this notion to a set of nodes (e.g. candidate biomarker
nodes and COVID-19 nodes) the length of the minimum connecting
shortest path (MSP) is a proxy for the biomarker or target relevance
[110]. The MSP approach has been proved to be an effective metric for
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Table 2. Tools for therapeutic target identi�cation.

Reference

Tool First release Approach Main input Available as Link Tool COVID-19

GPSnet Dec, 2018 Network Distance Protein-Protein Network Matlab lib https://github.com/ChengF-Lab/GPSnet [91] [92, 93]

TrustRank/Steiner tree Jul, 2020 Network Distance Protein-Protein Network Web tool https://exbio.wzw.tum.de/covex [94, 95] [95]

MONET-DSD Jun, 2020 Network Diffusion Protein-Protein Network Command line https://github.com/BergmannLab/MONET [96] na

Decagon/AI-Net Sep, 2018 Graph conv. network Protein-Protein Network Python script https://github.com/mims-harvard/decagon [97] [93]

VIPER Jun, 2016 Master Regulator Analysis Transcriptome network R package http://califano.c2b2.columbia.edu/viper [98] [99]

corto Jun, 2020 Master Regulator Analysis Transcriptome network R package https://github.com/federicogiorgi/corto [100] [101]

MANTRA Aug, 2010 Gene set enrichment Transcriptional signature Web tool https://mantra.tigem.it [102] [103]

AutoDock Vina Feb, 2011 Docking Proteins/Ligand Structure C++ lib, Command linehttp://vina.scripps.edu [104] [105]

Deep Docking Aug, 2010 Docking Proteins/Ligand Structure Command line https://github.com/vibudh2209/D2 [106] [107]

MT-DTI Aug, 2010 Af�nity prediction Proteins/Ligand Structure Web tool https://mt-dti.deargendev.me [108] [109]

ranking and re-purposing drugs against COVID-19 infection [92, 93]. This
approach has been originally developed to repurposing drugs in cancer-
derived networks with the GPSnet tool [91] and can be easily adapted
to COVID-19 networks as shown in [92] and [93] where the authors
integrated virus/host interactome data from [72] (Table 1) with a human
protein–protein interaction network to rank repurposable drugs based on
the distance of their molecular targets from COVID-19 nodes.

Shortest path methods ultimately rely their estimate on the length of a
single path (i.e. the minimal one), other methods, such as the TrustRank
method [94], try to de�ne the relevance of a node-set (the candidate
bio-marker) with respect to another (COVID-19 targets) based on global
characteristics like the connectivity level between the two. It is a variant of
the Google's PageRank algorithm and is implemented in the CoVex tool
[95]. This method can be used to rank a set of protein nodes based on how
well they are connected to a set of trusted seed proteins (e.g. SARS-CoV-2
target proteins from [72] (Table 1). In particular, the algorithm propagates
such a trustiness information from seed nodes to other non-seed nodes and,
based on these propagated values, ranks the all other protein nodes based
on their connectivity with the seeds.

The Steiner tree problem aims at �nding the minimum cost subgraph
connecting a given set of seed nodes. In the case of COVID-19 derived
networks, it can be mapped to the problem of �nding the minimal subgraph
connecting a selection of COVID-19 interactors (acting as seeds), in
order to have a representation of the mechanism of action related to
such interactors and consequently identify potential drug targets and drug
candidates. The Steiner tree problem belongs to the class of NP-hard
problems, but different ef�cient approximation algorithms exist for this
problem. An implementation based on �nding and merging multiple 2-
approximate solutions to the Steiner tree over a protein-protein network
and seed nodes selected from [72] (Table 1) is presented in the CoVex tool
[95].

Diffusion based methods can be used to rank candidate drug-related
biomarkers based on a graph diffusion state similarity measure. A diffusion
state can be obtained for a nodex by computing for all the other nodesy the
expected number of random walks originating inx and passing throughy.
This approach has been employed by [93] to score a set of drugs based on
a the similarity of diffusion states between each drug target node-set and
COVID-19 target nodes. This methods can be easily implemented using
the Diffusion State Distance (DSD) tool available in the MONET toolbox
[96]

Another interesting approach to drug-related biomarker de�nition,
is the possibility to numerically encode all of the semantic contained
in the network under study in a low dimensional space and look for
similarities between encoded entities in this new space using vector-
based distance measures. Graph embedding methods are based on neural
networks implementing an encoder-decoder architecture; this latter able to
translate network entities in numeric vectors. It is possible to represent the

knowledge network containing interactions between proteins, drugs and
diseases in a low dimensional space (an hyper-plane) where each node
of the graph can be represented as a scalar vector and distances between
points in the encoded feature space are representative of: i) the association
between drugs and diseases, ii) the similarity between diseases, and iii)
similarities between drugs' Mechanism of Action. Gysiet al. [93] report
an example of drug repositioning based on the embedding of a multi-
modal graph containing information on three distinct types of biomedical
entities (i.e. drugs, proteins, diseases), and edges representing four types
of relationships between the entities (i.e., protein-protein interactions,
drug-target associations, disease-protein associations, and drug-disease
treatments). This approach can be implemented by using an adaptation
of the Decagon tool [97], that implements a graph convolutional neural
network model for detecting polypharmacy side effects.

9.2 Tools based on transcriptomic regulatory networks

While the previous strategies can be more suited to target viral/host
interactors, functional annotation based approaches can be used to identify
biomarkers related to the host response to the infection. These approaches
can exploit omics data generated from infected samples to infer activated
protein modules and/or biochemical pathways that in turn can be used to
produce biomarker-targets for drug repositioning.

Li et al. [111] followed this kind of approach using transcriptomic data
of infected NHBE, A549_ACE2 and Calu3 human lung epithelial cells
from [47] (Table 1) and their normal counterparts to identify differentially
expressed genes and dysfunctional signaling KEGG pathways activated
by these latter. Drug bank data was then exploited in order to �nd drugs
potentially inhibiting one or more of discovered pathways.

Master Regulator Analysis (MRA) exploits network models derived
from omics assays [112]. In the context of viral infection, a master
regulator (MR) can be identi�ed as a regulatory protein whose activity is
suf�cient to determine the success of the infection process. In this setting,
also the concept of tumor checkpoints [112] (i.e. an hyperconnected and
autoregulated module built around MR proteins) can be translated in
the concept of infection checkpoint and thus regarded as a biomarker.
In particular, it is possible to extrapolate a set of crucial biomarkers of
the infection process, constituted by modules (subnetworks) linked to a
master regulator, i.e. a key-responsive transcriptional regulator along with
its direct targets. The VIPER tool [98] can be used to identify transcription
factors controlling the infection process given a regulatory network built
over infection transcriptome data. This approach has been implemented in
Laiseet al. [99] where the authors used transcriptome data from Calu-3
lung adenocarcinoma cells infected with SARS-CoV to identify Master
Regulator proteins related to SARS-CoV infection process.

These models can be further enhanced by integrating omics derived
regulators with functional networks (e.g. known protein-protein networks,
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pathway-based networks, etc..) thus obtaining functional modules linked to
master regulators. Such an approach has been successfully adopted in [101]
where the authors used theircortoalgorithm [100] to identify disease sub-
modules related to SARS-CoV infection derived co-expression network.

The availability of omics data from infected samples makes it possible
to derive biomarkers based on omics signatures (i.e. omics pro�les that
are characteristics of the particular infection). In this case the biomarker is
represented by the set of molecular features (e.g. genes, proteins, miRNAs)
differentiating COVID-19 infected tissues from the normal counterparts.
Complex biomarker such as gene signatures, can also be used to discover
potential drugs that can inhibit its components' activity. In particular it
can be compared to known drug signatures (e.g. drug gene expression
signatures from the Connectivity Map dataset [113]) by using a Gene Set
Enrichment based Analysis against transcriptional signatures associated to
known drugs. This approach is implemented in the MANTRA tool [102]
and has been applied to COVID-19 in Napolitanoet al. [103] where the
authors exploited the transcriptomics data from primary human bronchial
epithelial cell line (NHBE) [47] (Table 1).

9.3 Tools based on Protein/Ligand af�nity structures

Structure based approaches rely on the study of the structural af�nity
between proteins and drug molecules that in turn drives the interaction
potential between these two. This approach is particularly suited in
targeting viral proteins and, in particular, in the discovery of drugs with
potential inhibitory effects against these latter. Structure based approaches
for targeting viral proteins goes through three main steps: i) identi�cations
of target viral proteins; ii) modelling of the 3D target proteins structures;
iii) search for potentially interacting ligands. Several data sources reporting
the protein sequences of all known COVID-19 proteins along with models
of their 3D structures are listed in Section 6 and Table 1.

The search for drug repurposing biomarkers in this case is reduced to
the identi�cation of (viral and/or host) proteins involved in the infection
process and showing structural af�nity for known compounds.

The task of determining the structural af�nity can be addressed
following a rule-based approach, using molecular docking screens, or by
indirect approaches, inferring possible protein/drug interacting pairs from
molecular derived features of these latter, given a statistical model trained
on known and validated molecule/protein interaction.

Docking simulations work by generating different poses between a
ligand and a protein given their 3D structure, obtained by testing different
orientations and conformations, and scoring all these poses to determine
the ligand af�nity between the two structures. This approach can be
implemented by using protein models from [76] (Table 1) and through
different tools like AutoDock Vina [104], applied by Yu et. Al. [105] to
SARS-CoV-2 structural and non-structural proteins, and the Deep Docking
tool [106] applied by Tonet al. [107] to SARS-CoV-2 main protease.

Indirect approaches for structural af�nity screening can be
implemented by means of machine learning tools.

These methods are capable of learning the high-dimensional structure
of a molecule starting from its raw sequence and encode (embed) it in
a low dimensional space, where the relationships between interacting
proteins/ligands can be learnt by means of (deep) neural networks or other
machine learning approaches. This approach has been implemented in
the MT-DTI tool [108] that is based on the natural language processing
based Bidirectional Encoder Representations from Transformers (BERT)
framework [114], and has been applied to SARS-CoV-2 protein sequences
extracted from the SARS-CoV-2 genome [1] (accession NC_045512.2, see
Section 6) to discover six coronavirus-related targeted by FDA approved
antivirals in [109].

10 Conclusion

The Bioinformatics community responded to the SARS-CoV-2 emergency
with an unprecedented amount of work and research outputs. We
have shown that the vast amount of scienti�c literature related to the
computational approaches for the identi�cation of biomarkers can be
classi�ed in �ve main categories. Some categories are more focused on the
data generation and sharing such as transcriptomics pro�ling to identify
the markers of the viral infection in host tissues and to characterize the
T cell repertoire. A vast amount of work has also been performed to
develop AI-based automatic diagnostic tools to characterize the severity
of the disease image scans. However, the area where the computational
biology community has exploited all the arsenal of approaches that
were also developed in other �elds such as cancer and neuroscience, is
the identi�cation of therapeutic targets of existing molecules. However
we want also mention some potential limitations and opportunities for
improvements in in some areas. In order to make signi�cant inroads in
terms of diagnostic development, it would be necessary for pro�les of
hundreds, if not thousands, of patients to be available. And it seems that 9
months into this pandemic we are still very far from the mark. For example,
regarding AIRR-seq, while sequencing performed on bulk samples can be
informative it will be at some point necessary to determine repertoires
among sub-populations separately. For TCR-seq, for instance, it would
be quite important to consider separately the repertoire of T helper cells,
effectors, memory, or regulatory populations.

Overall, we have brie�y described the most advanced approaches,
mainly based on the inhibition of the signalling cascades activated by viral
infection using the knowledge encoded in gene regulatory networks and/or
protein-protein interaction networks. Indeed, a plethora of algorithms
developed in the area of systems biology has been successfully exploited
to prioritize existing drug and molecules, some of the predicted drug
are already in clinical trials. Finally, we have also reported the main
bioinformatics tools needed in the process of vaccine development that
is the ultimate way to combat the emerging COVID-19 pandemic.
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Fig. 1. A) the p-value of the gene with significant attention score enrichment, B) Right panel shows the genes with a significant (p-value < 0.1) �–rank. C) SARS-CoV-2 infection. The
Sars-Cov-2 virus adheres to and enters human cells through the interaction of the viral Spike protein and the human ACE2 receptor. The virus entry mechanism is favored by the presence
of some cleaving enzymes, such as TMPRSS2 and Furin, which activate the Spike protein. Virus endocytosis within clathrin-coated vesicles is regulated by the AAK1 gene. The release
of the viral RNA, the subsequent replication and assembly of new particles cause pyroptosis of the host cell and the release of damage associated molecular patterns. These molecules are
recognized by adjacent cells that secrete pro-inflammatory cytokines and chemokines. The pro-inflammatory stimulus attracts monocytes, macrophages and T cells to the site of infection,
which contribute to the inflammatory process with a positive feedback loop. In the physiological immune response, antigen presenting cells (APCs) engulf the viral particles and stimulate
the activation of T-helper cells. The latter trigger the adaptive immune response by stimulating B cells to produce antibodies against the virus and T cytotoxic cells that recognize and destroy
other virus-infected cells. On the other hand, the accumulation of immune cells at the site of infection due to excessive proinflammatory stimulus, such as the release of IL-6, causes the
cytokine storm, damage to lung tissues and increases the risk of death.
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