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Machine learning prediction of oncology
drug targets based on protein and network
properties
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Abstract

Background: The selection and prioritization of drug targets is a central problem in drug discovery. Computational
approaches can leverage the growing number of large-scale human genomics and proteomics data to make in-
silico target identification, reducing the cost and the time needed.

Results: We developed a machine learning approach to score proteins to generate a druggability score of novel
targets. In our model we incorporated 70 protein features which included properties derived from the sequence,
features characterizing protein functions as well as network properties derived from the protein-protein interaction
network. The advantage of this approach is that it is unbiased and even less studied proteins with limited
information about their function can score well as most of the features are independent of the accumulated
literature. We build models on a training set which consist of targets with approved drugs and a negative set of
non-drug targets. The machine learning techniques help to identify the most important combination of features
differentiating validated targets from non-targets. We validated our predictions on an independent set of clinical
trial drug targets, achieving a high accuracy characterized by an Area Under the Curve (AUC) of 0.89. Our most
predictive features included biological function of proteins, network centrality measures, protein essentiality, tissue
specificity, localization and solvent accessibility. Our predictions, based on a small set of 102 validated oncology
targets, recovered the majority of known drug targets and identifies a novel set of proteins as drug target
candidates.

Conclusions: We developed a machine learning approach to prioritize proteins according to their similarity to
approved drug targets. We have shown that the method proposed is highly predictive on a validation dataset
consisting of 277 targets of clinical trial drug confirming that our computational approach is an efficient and cost-
effective tool for drug target discovery and prioritization. Our predictions were based on oncology targets and
cancer relevant biological functions, resulting in significantly higher scores for targets of oncology clinical trial drugs
compared to the scores of targets of trial drugs for other indications. Our approach can be used to make indication
specific drug-target prediction by combining generic druggability features with indication specific biological
functions.
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Background
Drug target identification is one of the most critical
steps in the pre-clinical drug development pipeline and
the choice of the right target can significantly impact the
chances of advancing the drug to clinical development
and the success of the clinical trials. With the accumula-
tion of approved and clinical trial drugs, it has become
clear that successful drug targets share several important
features, which include having a disease relevant bio-
logical function and certain properties that would favor
the existence of binding sites, thus making the protein
capable of binding to small molecules.

There are a variety of experimental techniques for target
identification including affinity pull downs, pooled RNAi
data [1] and more recently genome-scale CRISPR–Cas9
screens [2]; however, these methods are expensive and labor
intensive and not without limitations. Computational ap-
proaches on the other hand can leverage the growing num-
ber of large-scale human genomics and proteomics data sets
to makein-silico target identification, thus potentially redu-
cing substantially the cost and the time needed to assess a
target. A targeted computational approaches for example is
the structure-based drug discovery where protein druggabil-
ity is determined through molecular docking methods
which can predict binding sites and binding affinity of the
target proteins [3]. These methods however are limited in
finding novel targets becausethe three-dimensional struc-
ture of most proteins is not readily available.

Several databases aim to systematically capture the
expanding number of approved and clinical trial drugs,
including their indications and corresponding targets.
Currently the DrugBank database [4, 5] contains 2594
approved small molecule drugs and 1289 approved bio-
tech drugs. Another comprehensive collection of drug
information, the Therapeutic Target Database (TTD)
[6], contains 2544 drugs and 2589 corresponding targets,
as well as drug resistance mutations and gene expression
profiles after treatments for some of the drugs. The ex-
istence of such databases allows us to find common
characteristics among the successful drug targets and to
use these features in combination with other knowledge
to guide novel drug discovery research.

Many data-driven approaches have focused on gene
expression changes after drug treatment to predict simi-
larity between drugs and potentially predict shared tar-
gets [7–9]. Several studies combined different data types
to improve the prediction of drug similarity [10] and to
predict drug-target interactions [11, 12]. Other methods
focused on predicting the probability of success in a
clinical trial by estimating the toxicity based on several
chemical properties, drug-likeness measures of the mole-
cules and the target properties [13].

Computational approaches to identify novel targets are
often limited by the availability of data for less studied

proteins. We propose an unbiased approach whereby
novel target identification leverages the characterization of
all proteins based on properties that are known or pre-
dicted based on protein sequence or genome-wide experi-
mental data. Machine learning techniques provide the
opportunity to identify the most important combination
of features differentiating validated targets from non-
targets. In this approach, the first step is to build a model
on a training set which consists of targets with approved
drugs and a negative set of non-drug targets. The model
can be used to generate a druggability score of the poten-
tial novel targets. A similar approach was first used by
Bakheet and Doig [14, 15] and followed by several other
works where the performance of the models was improved
by adding new features [16]. The protein features in these
models included properties derived from the sequence
and other protein functions such as gene ontology, essen-
tiality based on mouse gene knockdown experiments and
tissue specificity. The advantage of this approach is that is
it unbiased and can be used to evaluate proteins with lim-
ited information about biological function or essentiality
using a variety of properties determined from the amino
acid sequence of the protein.

Here we hypothesized that druggability of a target can
be indirectly and automatically derived from a set of
proteins that have been successfully identified as good
drug targets (positive set) with a machine learning ap-
proach that discovers their shared properties compared
to a negative set of proteins. The small set of known val-
idated drug targets and the large set of unknown poten-
tial targets resulted in an unbalanced positive-only
learning task [17, 18], requiring us to base our approach
on bagging thousands of Random Forest classifiers
trained on different instances of the negative set to
achieve high accuracy predictions in identifying the trial
drugs in clinical trials not belonging to the training set.

Network features have been shown to be particularly
important to score potential drug target proteins [19,
20] There are several differences between our approach
and the work presented in [19, 20], first, we focus just
on oncology drug target and use as additional functional
feature an ad hoc representation of the pathways where
each candidate protein is involved, second we show that
just five features encoding the protein network proper-
ties are enough to efficiently score the drug target with
high accuracy, and finally we adopt a bagging approach
to take into account the lack of appropriate negative ex-
amples of oncology drug targets. We also report the ap-
plication of our approach to the whole drugbank dataset
as was performed in [19, 20].

We focused our predictions on oncological targets by
scoring proteins by the most cancer-relevant biological
processes, molecular functions and signaling pathways
based on a manually curated database [21].
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The proposed approach can be readily used to make
indication-specific drug-target prediction by combining
generic druggability features with indication-specific bio-
logical functions.

Results
Properties of drug targets
We determined the set of approved oncology drugs
based on the current version of the Therapeutic Target
Database [6]. Approved, clinical and investigational
drugs with corresponding indication and their respective
targets were downloaded from the database. The data
was filtered and curated to determine a high confidence
list of approved and clinical trial oncology targets. Our
final list consisted of 102 targets for approved drugs and
an additional 277 targets for clinical drugs (TableS1).

Next, we determined a comprehensive list of 70 prop-
erties for all human proteins by combining the manually
curated literature captured in the Swiss-prot database,
the computational predictions for missing features and
network centrality properties calculated based on the
protein-protein interaction network (Methods). The set
of features included standard characteristics based on
the protein sequences from Swiss-prot database [22]
(such as molecular weight and physicochemical classes)
as well as several other properties that have been shown
to differentiate drug-targets from non-drug targets based
on previous publications [14–16]. These features in-
cluded: subcellular localization, post-translational modi-
fications, enzyme classification, PEST region (peptide
sequence enriched in proline, glutamic acid, serine and
threonine amino acids), secondary structure, signal pep-
tide cleavage, protein essentiality, solvent accessibility,
and tissue specificity (for a full list of features see Table
S2). Protein essentiality was determined based on mouse
homozygous loss-of function mutations that lead to le-
thality and mapped through orthologs to human pro-
teins [23].

In addition, we calculated network centrality measures
for each protein based on the protein-protein network in-
formation from the STRING database [24]. It has been
shown that network properties of proteins correlate with
their biological functions, essentiality and tissue specificity
[25, 26]. Therefore, the network information complements
these other properties further helping with the evaluation
of less studied proteins where information about bio-
logical function and essentiality may be limited.

To capture the known biological functions of the pro-
teins we used the comprehensive ontology database of
the commercially available database of Metacore [21]
and scored the proteins based on biological processes,
molecular function, and signaling pathways. The scoring
of the protein biological functions was done according
to the ranked ontologies ordered by the enrichment

analysis of the targets in the training set (Methods). This
procedure captured the most significant gene ontology
categories for the validated oncology targets in the posi-
tive training dataset.

Next, we performed statistical tests to identify the fea-
ture which were significantly different between the set of
drug targets and non-drug targets (Fig.1). Our main
findings were in good agreement with previous studies
[14, 15]. For example, we found that targets were more
likely to be membrane proteins (p = 2.33*10− 7), were
enriched in enzymes (p = 2.8*10− 11) and tended to be
tissue-specific (1.6*10− 8). We found the presence of
more glycosylation sites (p = 9.8*10− 20) possibly indicat-
ing longer half-lives for drug targets. The target essenti-
ality status, determined from mouse knock-out studies
[23], was significantly more established compared to the
non-targets (p < 2.2*10− 16) reflecting the fact that the
drug targets are in general more studied proteins.

Interestingly, the network properties of the proteins
showed large differences between drug- and non-drug tar-
gets (p < 2.2*10− 16 for all network measure). Indeed, it has
been observed in previous studies that drug targets tend to
have a higher number of connections compared to non-
target proteins based on unbiased high-throughput yeast
two-hybrid system [25]. We found that the commonly used
network centrality measures showed some of the most sig-
nificant differentiation between targets and non-targets
(Fig. 1). We included a complete list of differentiating fea-
tures in supplementary data (TableS2and FigureS1).

Machine learning prediction of target “druggability”
Our main objective is to use the set of 70 protein features
described above to prioritize and score proteins in order to
promote the discovery of novel targets and/or to filter the
candidate list of targets. The set of 102 targets of approved
cancer drugs is our positive training set, this is the typical
setting where a learner only has access to positive examples
and unlabeled data because in the set of proteins outside
this small collection of approved targets there are many tar-
gets (for example in the pipelines) or targets still to be con-
sidered or discovered. This kind of problem is known in
machine learning asPositive Unlabeled(PU) [17, 27] with
the additional complication of the high unbalance [28] be-
tween the positive set and the wide set on unlabeled sam-
ples. Here we adopt an approach combiningeasy ensemble
[28] and bagging[29] as shown in Fig.2. In order to have a
balanced training set for our model we generated negative
training sets of the same size of the positive set by random
sampling without replacement all human proteins after ex-
cluding both the approved and clinical trial oncology tar-
gets. We built 10,000 random forest models using each of
the random negative sets and made predictions based on
each model. We then assigned a drug target probability
score to each protein by averaging the predictions over the
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10,000 models. To evaluate the performance of our model
we considered the independent set of 277 targets which
had at least one oncology clinical trial drug targeting them,
but no approved drugs. We achieved a high-accuracy pre-
diction in identifying the clinical trial drugs resulting in an
AUC of 0.89 (Fig.3a and TableS3). Furthermore, we inves-
tigated if the threshold on theprotein-protein interaction
confidence would affect our results, but found no signifi-
cant changes in prediction accuracy (TableS3A). We note
that we tested neural network models as well for the pre-
dictions and the results andprediction accuracy was very
similar to the random forest models (results not shown).
The list of targets for approved cancer drugs used for the
training set and the clinical trial drug targets for validation
was included in the supplementary data (TableS1).

To further evaluate our predictions, we compared our
drug target score with a recent genome-scale CRISPR
screen by Behan et al. [2], where the authors defined a
priority score based on a 324 cancer cell line panel. We

found that our prediction score had a significant correl-
ation with the priority score calculated from the CRISPR
screen (p = 5.5*10− 12 significant correlation) validating
our findings.

Predictive features of target “druggability”
In our models, we included all features, regardless of
how well they differentiated drug targets form non-drug
targets. Most of the features included can be considered
as independent variables, however, there were few sub-
sets such as the network centrality measures or the gene
ontology classifications which were strongly correlated
(Fig. S2). Nevertheless, we found that the random forest
models were able to pick the most important variables
for the predictions. To characterize the relative import-
ance of the protein features in the predictions we looked
at the mean decrease of Gini metric [30]. We averaged
the variable importance over 10,000 models giving us an
overall estimate of feature importance (Fig.3b). The top

Fig. 1 Top features differentiating drug targets from non-targets. The features are significantly different between drug targets and non-targets.
The asterisk marks the significance level of the difference: p < 0.05 indicated as *, p < 0.01 indicated as ** and p < 0.001 indicated as ***. The red
and black bars correspond to drug and non-drug targets, respectively. a Degree or the number of interactions of the proteins. b Betweenness
centrality of the proteins. c Tissue specificity of proteins characterized by Shannon entropy. d Subcellular localization of proteins. e Enzyme
classification of proteins. f Essentiality of proteins. g Fraction of protein characterized by different post translational modifications
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measures include the biological function of proteins,
network centrality measures (page-rank, closeness, be-
tweenness, degree), protein essentiality, tissue specificity,
localization, and solvent accessibility. Indeed, it is ex-
pected that the biological function is a crucial feature of
a drug target protein, because a protein may be drug-
gable based on its 3D structure and other properties, but
if it is not involved in disease-relevant processes target-
ing it with a drug will have minimal impact on the dis-
ease state.

The different network centrality measures and protein
essentiality are correlated as shown in previous studies
[31]. The combination of biological function, essentiality
and centrality measures reflects the fact that the target
not only has to have the right biological function, but
the high centrality also assures that targeting it with a
drug will have a high impact on those processes. An-
other important feature for our predictions was tissue

specificity. Indeed, tissue-specific genes have been shown
that are more likely to be drug targets [26, 32] due to
the reduced risk of side effects.

We compared our predictions scores for the approved
oncology targets, clinical targets and the rest of the pro-
teins (Fig. 4a). As expected, our training data had the
highest score with a median of 0.96. Nevertheless, the
independent set of cancer clinical targets was also char-
acterized by a high median score of 0.73 compared to
the rest of the non-target proteins which had a median
score of only 0.11. It is expected that a large fraction of
proteins is not good drug targets because of poor drugg-
ability, toxicity or disease irrelevant biological functions.
However, the set of non-drug targets had a subset of
2117 outliers, proteins characterized with scores larger
than 0.5 (Fig.4a). We believe this subset of proteins may
contain potentially interesting candidates for novel drug
targets.

Fig. 2 Overview of the drug target druggability predictions. Our positive training set consisted of 102 approved oncology drug targets. We
generated negative training sets of the same size as the positive set by random sampling without replacement all human proteins after
excluding both the approved and clinical trial oncology targets. We built a large number of 10,000 random forest models using each of the
random negative sets and made predictions based on each model. We then assign a drug target probability score to each protein by averaging
the predictions of the 10,000 models. To evaluate the performance of our model we considered the independent set of 277 targets which had at
least one oncology clinical trial drug targeting them, but no approved drugs
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Methods
Protein properties
The sequences of all human proteins were downloaded
from the Uniprot database. Basic protein features were
determined using the pepstat program of the European
Molecular Biology Open Software Suite (EMBOSS) [41].
All properties generated from the Pepstat program were
included in the prediction.

The Swiss-prot database was used to extract the post-
translational modifications such as phosphorylation and
glycosylation sites as well as the enzyme classification
information.

Tissue specificity
The RNAseq tissue expression data was downloaded from
the Genotype-Tissue Expression (GTEx) and the Human
Protein Atlas (HPA) [42, 43] databases. To determine the
tissue specificity we calculated the entropy measure for a
gene expression profile as described below. We note that
Shannon entropy or similar measures have been used be-
fore to characterize tissue specificity of gene expression
profiles [44]. The equation describes the tissue specificity
of a gene (g), whereeig is the gene’s expression in tissuei,
N is the total number of tissues and Sg is the sum of ex-
pression in all tissues considered:

E gð Þ ¼ −
1
Sg

XN

i¼1

eig log2
eig

Sg

The entropy of a gene’s expression ranges from zero for
genes expressed in a single tissue to log2(N) for genes char-
acterized by a uniform expression profile across all tissues.
The entropy was calculated for both datasets separately and
the averaged values were used for the predictions.

Computational predictions of protein properties
In order to determine a complete set of features for all
human proteins, we utilized a set of computational pre-
diction methods. The input for all algorithms was the se-
quence of the proteins. We selected algorithms based on
availability and feasibility in terms of computational

times. A full list of the different methods utilized has
been listed in Table1.

The list of computational methods utilized to predict
target features.

Statistical analysis and data normalization
Our protein features included continuous and categorical
values. We applied the Wilcoxon Rank Sum and the Chi-
squared test for the continuous and categorical variables,
respectively as implemented in the R statistical software.

The determined features had a wide range of values and
applying appropriate scaling was necessary. First, the fea-
tures characterized by a heavy-tailed distribution (such as
the network properties) were log-transformed. Second, all
features were scaled to a number between zero and one
by normalizing them to the difference between the max-
imum (fmax) and the minimum of the feature (fmin):

f scaled¼
f − f min

f max− f min
:

Network properties
The protein interaction table was downloaded from the
STRING database [24] and the top 10% of the highest
scored interactions were used for the degree and central-
ity measure calculations. The degree, betweenness cen-
trality, closeness centrality, pagerank and eigen centrality
was calculated using the igraph R package.

Identifying drug targets
We downloaded from the TTD website [6] the full data-
base (version 6.1.01). This database contained 2917
unique protein targets. The downloaded data included
345 approved, 903 clinical trial and 1669 research tar-
gets. We filtered these targets based on the indications
and kept only the ones with at least one indication re-
lated to oncology. Our final list of oncology targets con-
sisted of 102 approved drug targets and an additional of
277 clinical trial drug targets.

Table 1 Computational methods to predict features

Name of the method Predicted Feature Reference website

NetPhos [45] phosphorylation sites http://www.cbs.dtu.dk/services/NetPhos/

GlycoMine [46] glycosylation sites http://glycomine.erc.monash.edu/Lab/GlycoMine/

WESA [47] solvent accessibility http://pipe.scs.fsu.edu/wesa/

Garnier [48] secondary protein structure http://www.bioinformatics.nl/cgi-bin/emboss/garnier

Epestfind [41] PEST motif http://emboss.bioinformatics.nl/cgi-bin/emboss/epestfind

SignalP [49] signal peptide cleavage site http://www.cbs.dtu.dk/services/SignalP/

CELLO [50] cellular sub-localization http://cello.life.nctu.edu.tw/

TMHMM [51] presence of transmembrane helices http://www.cbs.dtu.dk/services/TMHMM/
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