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Sannio, Via de Sanctis, 82100 Benevento, Italy; 6Cancer Program, Sidra Medicine, Al Luqta Street, Zone 52,
Education City, 26999, Doha Qatar; 7Department of Internal Medicine and Medical Specialties (Di.M.I.),
University of Genoa, Viale Benedetto XV 10, 16132 Genoa, Italy; 8Department of Systems Biology, Columbia
University Irving Medical Center, 1130 St Nicholas Ave, New York , NY 10032, USA; 9Department of
Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, 1130 St Nicholas Ave,
New York, NY 10032, USA; 10Department of Pathology and Center for Cancer Research, Massachusetts General
Hospital and Harvard Medical School, 55 Fruit St, Boston, MA 02114, USA; 11Broad Institute of Harvard and
MIT, 415 Main St, Cambridge, MA 02142, USA; 12Department of Pathology and Cell Biology, Columbia
University Medical Center, 1130 St Nicholas Ave, New York , NY 10032 USA and 13Department of Neurology,
Columbia University Medical Center, 1130 St Nicholas Ave, New York, NY 10032, USA
∗Correspondence address. Antonio Iavarone, Institute for Cancer Genetics, Columbia University, 1130 St Nicholas Ave, New York, NY 10032, USA Michele
Ceccarelli, Department of Electrical Engineering and Information Technology (DIETI), University of Naples “Federico II”, Via Claudio 21, 80128 Naples,
Italy Tel: +390817683787, Email: michele.ceccarelli@unina.it http://orcid.org/0000-0002-0683-4634

ABSTRACT

Background: Single-cell RNA sequencing is the reference technique for characterizing the heterogeneity of the tumor
microenvironment. The composition of the various cell types making up the microenvironment can significantly affect the
way in which the immune system activates cancer rejection mechanisms. Understanding the cross-talk signals between
immune cells and cancer cells is of fundamental importance for the identification of immuno-oncology therapeutic targets.
Results: We present a novel method, single-cell Tumor–Host Interaction tool (scTHI), to identify significantly activated
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2 A map of tumor–host interactions in glioma at single-cell resolution

ligand–receptor interactions across clusters of cells from single-cell RNA sequencing data. We apply our approach to
uncover the ligand–receptor interactions in glioma using 6 publicly available human glioma datasets encompassing 57,060
gene expression profiles from 71 patients. By leveraging this large-scale collection we show that unexpected cross-talk
partners are highly conserved across different datasets in the majority of the tumor samples. This suggests that shared
cross-talk mechanisms exist in glioma. Conclusions: Our results provide a complete map of the active tumor–host
interaction pairs in glioma that can be therapeutically exploited to reduce the immunosuppressive action of the
microenvironment in brain tumor.

Keywords: Brain Tumors; Single Cells; Ligand-receptor signalling; Tumor Microenvironment

Background

The interaction between malignant cells and their microenvi-
ronment influences tumor growth and progression because the
immune system can eliminate cancer cells that present neoanti-
gens recognized by receptors of the adaptive immune system or
express ligands for activating receptors on innate immune cells
[1]. The composition of the various cell types making up the mi-
croenvironment can significantly affect the way in which the im-
mune system activates cancer rejection mechanisms [2–4] and
influences the response to immune therapies [5, 6]. Therefore,
the elucidation of the tumor–host interaction mechanisms plays
a crucial role in the understanding of tumor growth and evolu-
tion [7, 8] and in the identification of immuno-oncology thera-
peutic targets [9]. Immune checkpoint inhibitor (ICI) therapies
are aimed at targeting specific cell–cell interactions between
programmed cell death protein 1 (PD1) and programmed death–
ligand 1 (PD-L1) or cytotoxic T lymphocyte–associated protein 4
(CTLA-4) and B7-1/B7-2 [10]. The identification of novel interac-
tions that characterize tumor types and shape the immune re-
sponse also has important clinical implications and can help to
better stratify patients [2] and predict response to ICI [11].

Single-cell RNA sequencing is the reference technology for
the quantification and phenotyping of the tumor microenvi-
ronment at high resolution [12, 13], enabling measurement of
the composition of individual immune/stromal compartments
making up the microenvironment. This technique can also be
used for a better elucidation of the tumor–host signaling mech-
anisms [14] and the identification of tissue-specific interactions
at an unprecedented spatially resolved level of detail [15].

Gliomas are characterized by the worst survival among
brain tumor malignant neoplasms [6]. In particular glioblas-
toma (GBM; grade IV glioma) is the most frequent type of
primary brain tumor, having a median survival <15 months
[16]. In glioma, higher mutational load is associated with in-
creased tumor aggressiveness [2]. Myeloid-derived cells, mostly
blood-derived macrophages and resident microglia, are the most
prevalent immune compartments observed in the microenvi-
ronment of GBM [17–19], inhibiting a productive anti-tumor im-
munity in GBM and excluding T lymphocytes [20]. The elucida-
tion of the active ligand–receptor (L–R) interactions in the cross-
talk between tumor cells and their microenvironment can help
to identify the mechanisms that the transformed cells in glioma
use to recruit this immunosuppressive microenvironment and
to discover novel therapeutic targets.

Here we exploit single-cell data developing single-cell
Tumor–Host Interaction (scTHI), a novel algorithm and tool to
identify the L–R pairs that modulate the tumor microenviron-
ment cross-talk in glioma. scTHI is based on the hypothesis that
when patterns of interaction are active, they are also simultane-
ously and highly expressed in homogeneous cell populations.
We also model the autocrine and paracrine signaling effects of
L–R partners [21]. Interestingly, by assembling the largest col-

lection of single-cell datasets available to date, we show that
unexpected cross-talk partners are highly conserved across dif-
ferent datasets in the majority of the tumor samples. This sug-
gests that shared cross-talk mechanisms exist in glioma. Our
results provide a complete map of the active tumor–host inter-
action pairs in glioma that can be therapeutically exploited to
reduce the immunosuppressive action of the microenvironment
in brain tumor.

Data Description
Single-cell datasets

Glioma single-cell gene expression profiles were collected from
6 different datasets of glioma (Table 1). We obtained a sub-
set of isocitrate dehydrogenase (IDH)-mutant gliomas includ-
ing 10,688 cells from 16 patients from 2 different studies [22,
23]. Later, we refer to this subset of cells as a unique dataset.
High-grade glioma profiles were collected from 3 distinct stud-
ies: Darmanis et al. profiled 3,589 cells from 4 patients [24]; Yuan
et al. profiled ∼29,000 cells from 10 patients augmented with
2 novel specimens (PJ052 and PJ053) following library construc-
tion and sequencing described in [17]; and Neftel et al. profiled
7,930 cells from 28 patients [25]. We also considered another
dataset of 5,603 single-cell profiles derived from both patients
with low-grade and high-grade glioma (n = 13) [26]. Overall,
we collected gene expression profiles of 57,060 cells for a total
of 71 patients with glioma. The cohort is composed of several
tumor histologies, including 7 oligodendrogliomas (4,753 cells),
2 oligodendroastrocytomas (612 cells), 11 astrocytomas (9,421
cells), and 50 GBMs (42,274 cells). Gene expression profiles were
processed independently for each dataset. The transcripts-per-
million–normalized data of the Tirosh et al., Venteicher et al.,
and Neftel et al. [22, 23, 25] datasets were downloaded from the
GEO repositories under accession numbers GSE70630, GSE89567,
GSE131928, respectively. Gene expression profiles from Yuan et
al. and Darmanis et al. [17, 24] were downloaded from GEO repos-
itories under accession numbers GSE103224 and GSE84465, re-
spectively. Meanwhile, raw data from Yu et al. [26] were obtained
from the authors. The last 3 datasets were further processed
applying a library size normalization and logarithmic transfor-
mation. Moreover, to reduce the drop-out effects, data matri-
ces were also imputed with a Markov affinity-based graph ap-
proach [27]. When the specific information to distinguish malig-
nant cells from non-tumor cells was not available, we analyzed
the chromosomal aberrations in each individual cell by averag-
ing expression level along genomic locations as performed by In-
ferCNV [28]. The chromosomal landscape of inferred copy num-
ber variation (CNV) allows us to identify non-transformed cells,
i.e., cells that did not harbor the typical chromosomal alterations
observed in glioma. Altogether we identified 45,550 malignant
cells and 11,510 non-malignant cells among datasets.
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Caruso et al. 3

Table 1: Overview of collected datasets

Dataset GEO Accession No. tumor cells No. non-tumor cells
No.

patients Protocol

Tirosh et al. [22] GSE70630 4,045 302 6 Smart-seq2
Venteicher et al. [23] GSE89567 5,284 1,057 10 Smart-seq2
Darmanis et al. [24] GSE84465 1,091 2,498 4 Smart-seq2
Yuan et al. [17] GSE103224 25,056 4,194 10 Proprietary microwell

platform
Neftel et al. [25] GSE131928 6,863 1,067 28 Smart-seq2
Yu et al. [26] GSE117891 3,211 2,392 13 STRT-seq
Total 45,550 11,510 71

STRT-seq: single-cell tagged reverse transcription sequencing.

Ligand–receptor collection

To identify potential tumor–host interactions we collected a list
of 2,548 pairs of ligands and receptors (Table S1) curating pub-
licly available resources [21, 29]. The curated list is composed of
known and novel literature-supported interactions and includes
both heteromeric and monomeric ligands/receptors mainly re-
lated to chemokine, cytokine, growth factor, integrin, transform-
ing growth factor (TGF) and tumor necrosis factor (TNF) family
members, semaphorins, ephrins, Wnt, and Notch signaling. The
table of interactions is released in the scTHI Bioconductor pack-
age.

Immune cell type signatures

Cell-type–specific signatures and markers were used to infer the
cellular identity of non-malignant cell subpopulations. For this
purpose, we generated a curated list of 295 signatures of the im-
mune and central nervous systems integrating data from vari-
ous sources (Table S2). In particular we merged a manual col-
lection of marker genes with a set of signatures available from
public databases and published studies, including (i) a com-
pendium of 64 human cell type signatures including lymphoid,
myeloid, stromal, tissue-specific, and stem cells, collected from
FANTOM5, ENCODE, Blueprint, and Gene Expression Omnibus
(GEO) data portals; (ii) a set of markers for 30 immune cell types,
including myeloid and lymphoid subpopulations identified from
peripheral blood mononuclear cells [30]; (iii) a set of central ner-
vous system cell signatures including astrocytes, neurons, oligo-
dendrocytes, microglia, and endothelial cells [31]; (iv) a set of 53
signatures corresponding to 26 different cell types [32–35]; and
(v) 2 gene expression programs related to microglia and bone
marrow–derived macrophages in gliomas [23]. All 295 signatures
are released in the scTHI tool.

Analyses

We present scTHI, an R/Bioconductor package to discover L–R
interactions in single cells. There have been several attempts at
scoring such pairs that are mainly based on the mean expression
of the gene pairs across cell populations. One recent approach
is reported in Kumar et al. [14], in which the authors score in-
teractions by calculating the product of mean receptor expres-
sion and mean ligand expression in the respective cell types un-
der examination. The significance of the interaction is evaluated
through a 1-sided Wilcoxon rank-sum between the median in-
teraction score across samples. This idea is similar to the origi-
nal approach reported by the authors of CellPhoneDB [29], where
the mean expression of the gene pair is considered with the con-

straint that only receptors and ligands expressed in >10% of the
cells in the analyzed cluster are selected. The significance of the
interaction is then evaluated using a random permutation of the
samples. Likewise, the approach proposed by Wang et al. [36]
evaluated the expression levels of both ligands and receptors
and only highly expressed or differentially expressed genes were
selected to find significant L–R interaction. To test whether an in-
teraction pair was highly expressed in 2 populations, Joost et al.
[37] used a random sampling approach, selecting only pairs with
an expression level above a baseline threshold with a corrected
P < 0.01. Instead, Halpern et al. [38] computed an enrichment for
each interaction based on the z-score of the mean expression of
every L–R pair tested.

The basic workflow of scTHI is presented in Fig. 1. First, we
perform a cell-specific identification using the gene set enrich-
ment Mann-Whitney-Wilcoxon gene set test (mww-GST) [39]
based on a collection of 295 gene immune and stromal signa-
tures. We adopt mww-GST because it has been proven to per-
form better than other enrichment analysis methods in situ-
ations of weak and noisy signals and therefore can be used
in single-cell scenarios with the presence of low detection
efficiency and drop-out phenomena. The second step of the
pipeline is the scoring of the candidate L–R pairs using the pro-
cedure described in the Methods section. Briefly, the method
computes for each cluster the percentage of cells where the L–R
partners are ranked at the top 20% (this is a tunable parameter).
The score is the mean between the 2 percentages and it priori-
tizes L–R with paracrine activation, removing from the score the
autocrine effects (see Methods). The significance of the score is
computed by a bootstrap-generated null distribution obtained
by randomly shuffling the input data.

Most of the aforementioned methods use mean expression
as a measure to detect whether an interaction exists. They do
not consider that single-cell RNA-seq expression can be signifi-
cantly influenced by drop-out effect and the average introduces
bias in L–R detection. Differently from these methods, the scTHI
score is based on the percentage of cells in 2 clusters where the
expression of the L–R genes is ranked at the top of the expres-
sion profile of every cell of the cluster. The choice to use as score
the percentage of cells expressing a top-rank L–R pair gives pri-
ority to those pairs that are more uniformly expressed in 2 clus-
ters of cells. Overall, this allows us to discard interaction pairs
for which 1 of the 2 members is highly expressed and the other
is not, which instead would be detected using a score based on
the average of the expression. To show how scTHI reduces the
number of false-positive results with respect to methods based
just on the gene expression average such as iTALK [36] we can
consider the simple example in Fig. S1A, where we have a pair
MMP7-ERBB4, with one of the partners poorly or not expressed

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/9/9/giaa109/5923174 by guest on 21 O

ctober 2020



4 A map of tumor–host interactions in glioma at single-cell resolution

Figure 1: scTHI workflow. Description of scTHI functionalities. (A) In the first step a single sample enrichment analysis based on the Mann-Witney-Wilcoxon gene set
test (mww-GST) [39] with a collection of 295 gene immune and stromal signatures is used to nominate the identity of cells of the microenvironment. (B) In the second

step, given 2 clusters of cells, the most significant L–R interactions are identified by assigning a score to all 2,548 collected pairs of ligands and receptors.

at all in the cells. This pair is discarded by scTHI; however, the
mean expression of both, 5.37, is comparable to that of most
other reliable pairs such as the pair APP-FPR2 (score = 0.995,
mean expression = 6.7) or BGN-TLR4 (score = 0.960, mean ex-
pression = 5.21) in the same patient reported in the figure. Sim-
ilarly, in cases involving protein complexes, scTHI ensures the
selection of only L–R pairs for which both partners of the com-
plex are expressed at the top in the majority of the cells in 1 of
the clusters. Fig. S1B shows the expression of the pair formed by
the ITGB1:ITGA9 complex and the SPP1gene in patient MGH42;
the ITGB1:ITGA9 complex should be expressed by cancer cells.
However only 1 of the 2 members of the complex is highly ex-
pressed in the tumor cluster (ITGB1) while the expression of the
other partner (ITGA9) is almost undetected. This pair has a scTHI
score of 0 and is discarded. However, it has a global expression
level (mean expression = 4.36) similar to that of other correctly
expressed pairs, e.g., THY1 ITGAX:ITGB2 (mean expression 4.59
and scTHI score = 0.7).

Finally, differently from iTALK and cellPhoneDB, scTHI score
explicitly models paracrine and autocrine effects. Because we
are particularly interested in paracrine effects, our score penal-
izes L–R pairs in which both partners are highly expressed in
the same cell. In the paracrine mode, scTHI returns only those

pairs for which partner A is expressed only in 1 of the clusters
and partner B is expressed in the other cluster. Meanwhile, in
the autocrine mode scTHI returns all pairs for which the ligand
and/or receptor are expressed at approximately the same level
in both clusters (an example of the 2 different detection modes
is reported in Fig. S1C).

scTHI is able to recover validated interactions from
single-cell data

Many putative L–R interactions could be identified on the ba-
sis of quantitative gene expression evaluation. However, only
those occurring among cells spatially close to each other could
have a real biological functionality. Goltsev et al. observed that
the cellular neighborhood has a profound effect on the expres-
sion of protein receptors on immune cells [40], highlighting that
the spatial resolution of infiltrating immune cells and the can-
cer cells plays a key role in defining tumor heterogeneity. Given
these assumptions, we evaluated whether scTHI is able to de-
tect interactions occurring between clusters of cells that are spa-
tially close. For this reason, we used the high-quality CITE-seq
dataset described in Govek et al., where the spatial architec-
ture of murine splenic cells was resolved [15]. First, we used
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Caruso et al. 5

scTHI to identify all cell types composing the murine spleen
described by Govek et al., including T cells (cytotoxic, mem-
ory, naive, regulatory, and helper), B cells (follicular, naive, and
switched memory), dendritic cells (conventional and plasmacy-
toid), red-pulp macrophages, monocyte-derived macrophages,
neutrophils, plasma cells, erythrocytes, and erythroid progen-
itors. We used the signatures in scTHI (generated for human)
converted to their mouse orthologs. We asked whether sc-
THI was able to detect interactions occurring between clusters
of spatially close cells. Govek et al. [15] used CODEX to val-
idate some important L–R interactions occurring among red-
pulp macrophages and monocyte-derived macrophages (C1q-
Lrp1), red-pulp macrophages and neutrophils (Hebp1-Fpr2), and
monocyte-derived macrophages and neutrophils (Anxa1-Fpr1).
They identified these interactions on the basis of the proximity
of the corresponding cells expressing ligands and receptors in
both the CITE-seq and CODEX data. Interestingly, scTHI detected
the validated interactions among the top 10 highest scored (P
= 0.0277), without any spatial information, as shown in Fig. S2.
This highlights how our approach, which scored pairs on the ba-
sis of rank expression values, is robust and accurate in the iden-
tification of relevant L–R interactions.

Map of non-tumor cells in glioma

Gliomas are primary brain tumors characterized by high levels
of intratumor heterogeneity, and, despite numerous research
advances, the difference in tumor microenvironment compo-
sition is still not well understood [41]. We collected a single-
cell glioma dataset integrating 6 published studies. This allowed
us to comprehensively evaluate the composition of the tumor
microenvironment, spanning different molecular and histolog-
ical subtypes of glioma. Overall, we have 45,550 malignant cells
and 11,510 non-malignant cells among datasets. We classified
all non-malignant cells using scTHI; however, below we report
the percentages of specific cell compartments computed using
the datasets where the cells did not undergo any gating or selec-
tion strategy. Classification of the non-malignant cells (Table S3)
showed that the most frequent cells in the glioma microenviron-
ment were myeloid cells (∼57%), divided in macrophages (∼45%)
and microglia (∼12%), followed by glial cells (∼19%), vascular
cells (∼11%), CD8-positive (CD8+) T cells (∼4%), and a few sub-
populations of other cell types including natural killer (NK), neu-
trophils, dendritic cells, monocytes, mesenchymal stem cells,
and others (∼9%). As expected, grade IV glioma (GBM) showed
the highest percentage of macrophages in their microenviron-
ment (∼52% macrophages and ∼8% microglia) compared with
other histological subtypes (astrocytoma: macrophages = ∼10%
and microglia = ∼36%; oligo-astrocytoma: macrophages = ∼9%
and microglia = ∼21%; oligodendroglioma: macrophages = ∼1%
and microglia = ∼31%) (Fig. 2). Interestingly, switching from
more aggressive histological phenotypes (i.e., GBM) to less ag-
gressive ones (i.e., oligodendroglioma) the relative percentage of
macrophages decreases while the percentage of microglia cells
increases. These data are in agreement with the hypothesis that
gliomas in the early stages of their development primarily con-
tain brain-resident microglia cells, whereas macrophage pheno-
type is associated with higher grades [23]. Patients with astro-
cytoma and GBM also showed a high fraction of vascular cells
(∼44% and ∼14%, respectively), probably due to increased mi-
crovascular proliferation of these high-grade tumors compared
with oligodendrogliomas. Regarding the lymphoid populations,
T cells represent the most abundant fraction, with a greater
number of CD8 cells observed in GBM and oligo-astrocytoma.

We also evaluated whether there is a significant association
between the different cell types composing the microenviron-
ment and the molecular glioma subtypes [42]. We correlated the
percentage of cells classified in 1 of the glioma subtypes with
the percentages of non-malignant cell types only for patients in
which the cells were not selected with any gate strategy (Fig. S3).
This analysis showed a significant correlation between the mes-
enchymal subtype and the presence of macrophages (ρ = 0.47, P
= 0.015), myeloid-derived suppressor cells (MDSCs) (ρ = 0.56, P
= 0.003), dendritic cells (ρ = 0.40, P = 0.039), and astrocytes (ρ =
0.42, P = 0.033); proneural subtype was significantly associated
with the presence of oligodendrocytes (ρ = 0.43, P = 0.028); and
classical subtype was significantly associated with the presence
of microglia (ρ = 0.45, P = 0.019).

Cross-talk between mesenchymal GBM tumor cells and
myeloid cells in the glioma microenvironment

Because cells of myeloid lineage account for ∼50–60% of non-
neoplastic cells, we first focused on interactions occurring be-
tween tumor and myeloid cells, including bone marrow–derived
macrophages and microglia. The analysis was performed on the
patients with a sufficient number of detected myeloid cells (n =
39 patients). Each patient was tested to identify both paracrine
and autocrine interaction pairs. Only significant L–R pairs were
kept, with P < 0.05 and the constraint a total scTHI score >0.50 in
both clusters. Altogether, we detected 368 significant L–R pairs
across datasets by filtering out all interactions occurring in <4
patients. Approximately 80% of detected interactions (298 of
368) showed considerable autocrine signaling (Table S4). The
remaining 20% of the identified interactions (n = 70) showed
paracrine signaling, where the interaction genes were preferably
expressed on only 1 of the 2 clusters (Table S4). Several high-
scored interactions occurred specifically in few patients owing
to the typical heterogeneity of the tumor being considered. In-
terestingly, a high fraction of detected pairs (n = 56, ∼15%) was
shared between ≥50% of patients, suggesting the presence of
common tumor–host signaling mechanisms in glioma. Many
of the inferred interactions involved genes of the chemokine
and cytokine family (e.g., CCL5, CCR1, CCRL2), Toll-like recep-
tors (e.g., TLR2, TLR4), transforming growth factor genes, TNF
genes, MHC proteins (e.g., HLA-E, CD74), growth factors and their
receptors (e.g., EGFR, PDGFB, PDGFC, PDGFRA, IGF1, IGF1R), cell
adhesion molecules (e.g., integrins), enzymes with inhibitor ac-
tivity, and metalloproteinases. Gene ontology enrichment anal-
ysis revealed that secreted ligands or activated receptors in tu-
mor cells are typically involved in processes of extracellular ma-
trix remodeling, cell chemotaxis, Notch signaling, axonogenesis,
and gliogenesis (Fig. S4A and Table S5). In contrast, receptors and
ligands detected on myeloid cells modulate biological processes
such as leukocyte chemotaxis and migration, cell–cell adhesion,
cytokine production, myeloid cell differentiation, reactive oxy-
gen species metabolic processes, and regulation of vasculature
development (Fig. S4B and Table S5).

The significant interactions identified running scTHI in
paracrine mode, and most common among all patients with
glioma, were VCAN-TLR2 (72% of patients, P = 4.40 · 10−67) and
HBEGF-EGFR (51% of patients, P = 6.97 · 10−44) (Fig. 3 and Fig.
S5). The Versican gene (VCAN) codes for an extracellular matrix
proteoglycan, typically involved in processes of cell adhesion,
proliferation, and migration. It is highly expressed in glioma
cells, where it strongly contributes to tumor progression mecha-
nisms [43]. According to these observations, we found VCAN dif-
fusely expressed in the tumor cells of all the datasets considered
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6 A map of tumor–host interactions in glioma at single-cell resolution

Figure 2: Tumor microenvironment cell type classification in glioma. The bar plots show the relative percentage (A) and the number of cells (B) of each cell type

identified in the microenvironment of the main histological subtypes of glioma. DC: dendritic cell; GSC: glioma stem cell; MDSC: myeloid-derived suppressor cell; MSC:
mesechymal stem cell; NK: natural kiler cell; Treg: regulatory T cell.

Figure 3: Paracrine tumor–myeloid cell interactions. Bar plots show significant paracrine L–R interactions (P ≤0.05 and scTHI score ≥0.50) occurring between tumor
and myeloid cells shared in ≥4 patients. On the x axis are shown the number of patients in which each interaction occurred. (A) Interaction pairs in which the ligand
is expressed on tumor cells and the receptor on myeloid cells. (B) Interaction pairs in which the ligand is expressed on myeloid cells and the receptor on tumor cells.
Datasets are from [17, 22–26].
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Caruso et al. 7

(Fig. 4). The interaction’s partner, the Toll-like receptor 2 (TLR2),
is a membrane protein expressed on the surface of many cell
types, including monocytes and macrophages, and it is involved
in pattern recognition signaling pathway and innate immunity
activation. TLR2 is highly and specifically expressed only in cells
of the microenvironment of myeloid origin, and low expressed in
other cell types (Fig. 4B). The interaction occurring among VCAN
and TLR2 represents an effective link between inflammation
and tumor progression. Indeed, the Versican protein, released
by tumor cells in the extracellular space, binds TLR2, activat-
ing multiple cell types in the tumor microenvironment, includ-
ing myeloid, fibroblasts, and endothelial cells, and promotes the
production of many proinflammatory cytokines [44, 45]. The ac-
tivation of the TLR2 downstream signaling pathway also induces
the expression of metalloproteinases involved in extracellular
matrix degradation to promote tumor expansion [43]. The most
common interaction with the receptor on the tumor cells was
composed by the pair EGFR and HBEGF, which could tend to pro-
mote tumor growth. In fact, the epidermal growth factor recep-
tor (EGFR) is a tumor-promoting receptor commonly amplified
in gliomas, and the EGF-like growth factor (HBEGF) is a protein
highly expressed in regulatory macrophages with immunosup-
pressive activity [46]. Among other significant interactions of in-
terest identified by scTHI, 1 involves the macrophage migration
inhibitory factor (MIF) and its receptor CD74 (18% of patients); it
plays a role in tumorigenesis, exerting pro-tumorigenic effects
such as enhancing proliferation, tumor vascularization, and in-
hibition of apoptosis [47].

We also found that multiple significant interaction pairs in-
volved ligands (TGFB1, TGFB2), receptors (TGFBR1, TGFBR2), and
regulators (LTBP1, LTBP3) of the TGFβ signaling pathway. The
TGFβ pathway is a known driver of immunosuppression in mul-
tiple epithelial tumors and in GBM, in which it also drives other
hallmarks of aggressiveness (e.g., cancer stem cells, migration,
and invasion) leading to poor survival [48, 49].

The identification of interaction pairs in autocrine mode (Ta-
ble S4) revealed that this signaling is much more conserved
among patients than paracrine signaling. As expected, some of
the paracrine interactions described above were also identified
as autocrine, although they have a preferential paracrine direc-
tionality. Among the top-scored L–R autoc-rine pairs, there was
an interaction between RPS19 and C5AR1 (Fig. S6), detected in
all the patients with glioma tested (n = 39, P = 6.68 · 10−76). Al-
though this interaction has never been described in the context
of glioma, the ribosomal protein S19 (RPS19) is upregulated in
breast and ovarian cancers, and its interaction with the C5a re-
ceptor 1 (C5AR1), expressed on tumor-infiltrating myeloid cells,
has an immunosuppressive effect. RPS19 induces the produc-
tion of anti-inflammatory cytokines, the activation of T helper
2 (TH2) and regulatory T cells, and the reduction of infiltrat-
ing CD8+ T cells into tumors. It was also noted that reducing
RPS19 in tumor cells or blocking the C5AR1-RPS19 interaction
decreases RPS19-mediated immunosuppression, impairing the
tumor growth [50]. These observations could be translated into
gliomas, representing another potential therapeutic target.

Cross-talk between proneural GBM tumor cells and
oligodendrocytes in the glioma microenvironment

Whereas the microenvironment of mesenchymal GBM was mas-
sively enriched by myeloid cells, proneural GBM contained a low
number of myeloid cells but exhibited significant infiltration by
oligodendrocytes, which alone accounted for ∼17% of tumor-
infiltrating cells. Altogether we tested 30 tumor samples, among

the 71, for which we identified an adequate number of oligo-
dendrocytes in their microenvironment. Each individual tumor
was tested to identify both paracrine and autocrine interaction
pairs, and only significant interactions shared in ≥4 patients
were considered. Overall, we found 26 paracrine and 126 au-
tocrine interactions (Table S6). Gene ontology enrichment anal-
ysis revealed that the cross-talk between tumor cells and oligo-
dendrocytes mainly involved signaling pathways related to cell
growth and nervous system development, such as axonogen-
esis, regulation of neurogenesis, extracellular matrix organiza-
tion, developmental cell growth, gliogenesis, and synapse orga-
nization (Table S7). Indeed, among the top-scored paracrine in-
teractions (Fig. S7) there were several ligands and receptors in-
volved in cell-cell adhesion, angiogenesis, and tumorigenesis,
such as MDK–LRP2 (12 of 30 patients, P = 1.86 · 10−31) and JAM2-
JAM3 (11 of 30 patients, P = 1.96 · 10−28).

The MDK–LRP2, which scored as top interaction among GBM
tumor cells (ligand) and oligodendrocyte (receptor), is especially
intriguing because overexpression of MDK (midkine) has been
shown in several human tumors and recently was reported as a
driver of aberrant proliferation, poor survival, and pharmacolog-
ical resistance in human glioma [51]. In many patients, we also
detected as significant the interaction occurring between the
platelet-derived growth factor subunit A (PDGFA) and its recep-
tor, PDGFRA (11 of 30 patients, P = 3.97 · 10−25). PDGFA is a clas-
sical marker of oligodendrocytes required for normal oligoden-
drocyte development. However, the overexpression of its recep-
tor is a hallmark of proneural GBM, where it plays a critical role
during tumor development and progression [52]. We found that
∼72% of cells expressing PDGFRA at the top 20% of the ranked
expression profile were classified as proneural subtype (Fisher
exact test P < 2.2 · 10−16 and odds ratio = 5.4). Other L–R pairs
were specifically related to the development of the nervous sys-
tem and promoting neuronal adhesion, i.e., RGMB-NEO1 (11 of
30 patients, P = 1.96 · 10−28) and SEMA5A-PLXNB3 (8 of 30 pa-
tients, P = 9.72 · 10−20) bindings. The most shared interaction
detected was CNTN2-NRCAM (15 of 30 patients, P = 2.35 · 10−36).
The contactin 2 (CNTN2) gene, also known as axonal glycopro-
tein TAG-1 (TAX-1), codes for a cell adhesion molecule that plays
an important role in axonal elongation, axonal guidance, and
neuronal cell migration [53]. The gene is also amplified and aber-
rantly expressed in GBM, where it is involved in neoplastic glial
cell migration and tumorigenesis [54]. TAX-1 binds numerous
molecules, among which the neuronal cell adhesion molecule
(NRCAM) gene. In response to contactin binding, NRCAM pro-
motes directional axonal cone growth in fetal nervous system
development and mediates neurite outgrowth in the peripheral
nervous system [55]. Although less studied, NRCAM is also over-
expressed in high-grade astrocytoma and GBM, representing a
marker for brain tumor detection and a putative therapeutic tar-
get [56].

Cross-talk involving T cells in glioma

The scTHI classification of non-tumor cells identified subpop-
ulations of CD8+ T cells infiltrating the microenvironment of a
small subset of patients (n = 8). Although T cells play a funda-
mental role in antitumor immunity, GBM is particularly adept at
sabotaging immune surveillance, causing severe T-cell dysfunc-
tion, both qualitative and quantitative [57]. To better understand
the complex role of T cells in the glioma microenvironment, we
simultaneously evaluated the cross-talk existing between CD8+

T cells and tumor and myeloid cells, respectively.
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8 A map of tumor–host interactions in glioma at single-cell resolution

Figure 4: VCAN-TLR2 interaction. t-distributed stochastic neighbor embedding (t-SNE) plots of tumor and non-tumor cells for each dataset analyzed. (A) Each cell is
colored by patient (right, non-tumor, and left, tumor cells). (B) Each cell is colored according to expression value of the genes VCAN and TLR2 in tumor and non-tumor

cells, respectively. (C) t-SNE plot of non-tumor cells colored according to cell type classification. Datasets are from [17, 22–26].

We first investigated the putative L–R interactions occurring
between tumor and CD8+ T cells. Altogether, we detected 16
paracrine and 120 autocrine significant L–R pairs (Table S8), con-
sidering only interactions occurring in >3 patients. Most of the
identified interactions involved genes of the major histocom-
patibility complex Class I, chemokines, interleukins, interferon-
γ , and TNF signaling genes. Among all interactions detected in
paracrine mode (Fig. S8A–D), CADM1-CRTAM was the most com-
mon and high-scored L–R pair (6 of 8 patients, P = 1.90 · 10−12, Fig.
S8E–G). The CADM1 gene, also known as TSLC1, was originally
identified as a non–small-cell lung cancer tumor suppressor. The
gene encodes a cell surface protein, called NECL-2, which me-
diates epithelial cell junctions. We found that the CRTAM re-
ceptor is highly expressed in CD8 cells with respect to other
non-tumor cells. Although recent studies have shown a CADM1
loss at the protein and messenger RNA levels in high-grade
(World Health Organization III/IV) glioma compared with low-
grade glioma [58], the fact that we found this interaction mainly
in patients with GBM in association with infiltrating CD8+ T cells
further supports the tumor suppressor role of this gene.

Similarly, we analyzed the interactions between CD8+ T cells
and myeloid cells, identifying 53 paracrine (Fig. S9 and Table S9)
and 159 autocrine L–R pairs. The detected interactions mainly
involved (i) chemoattractant chemokine ligands and receptors,
such as CXCL16/CXCR6, CXCL12/CXCR3, CLL8/CCR2, CCL5/CCR1,
and others; (ii) immune checkpoint genes, such as CD86, CD28,
CTLA-4, and LGALS9; and (iii) lymphotoxins α and β (LTA and LTB)

and other TNF family members, which could modulate T cells’
immunity through different signaling pathways. The chemokine
receptor CXCR6, typically expressed on different T-cell compart-
ments, and its ligand CXCL16, secreted by macrophage cells,
were found highly expressed in all patients. They induce pro-
liferation and migration of tumor-associated leukocytes, affect-
ing cancer cell growth with pro-tumorigenic inflammation [59].
The CXCR3 receptor is also highly expressed on T cells and plays
an important role in T-cell trafficking and function [60]. LTA
and LTB are cytokines produced by lymphocytes belonging to
the TNF family. Although they were originally identified as lym-
phocyte products capable of exerting cytotoxic effects on tumor
cells in vitro and in vivo, recent studies have shown that lym-
photoxin (LT) contributes to several effector responses of both
the innate and adaptive immune systems. Binding to both TN-
FRSF1A/TNFRSF1B and LTβR with high affinity, LT-mediated sig-
naling is essential for the development of secondary lymphoid
tissues [61]. Moreover, the activation of LTβR on macrophages by
T-cell–derived LTs controls proinflammatory response, inducing
cross-tolerance to TLR4 and TLR9 ligands through the downreg-
ulation of proinflammatory cytokines and a negative regulation
of nuclear factor κB activation induced by TLR signaling [62]. Fi-
nally, we also identified 2 opposite immune checkpoint signals
in almost all patients involving CD28 (n = 8, P = 4.06 · 10−18)
and CTLA-4 (n = 6, P = 2.50 · 10−12) to binding CD86. Usually,
CD86/CD28 binding results in activation and initiation of T-cell
effector function. However, high levels of CTLA-4 expression on T
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cells, probably induced by cancer, create competition with CD28
and result in insufficient co-stimulation and a loss of T-cell pro-
liferation and function [57].

Discussion

In this work we describe scTHI, a novel computational approach
to identify active L–R interactions in single cells, and apply it to
5 glioma datasets encompassing 71 patients, 45,550 malignant
cells, and 11,510 non-malignant cells. We presented a compre-
hensive map of active tumor–host interactions in glioma (Fig.
S10). We have first shown that scTHI can identify recently dis-
covered interactions validated by CODEX [15] and then explored
common L–R cross-talk in glioma. Our results confirm, using
a much larger scale, that myeloid cells make up the bulk of
the microenvironment in glioma and that the ratio between
macrophages and microglia cell increases with more aggressive
phenotypes as has been previously observed for IDH-mutant
glioma [23]. Interestingly, the use of a large patient cohort al-
lowed us to link the specific immune compartments with glioma
subtypes. Indeed, we report that the presence of macrophages
and myeloid-derived suppressor cells was significantly corre-
lated with the mesenchymal subtype, as also described in [63],
whereas the proneural subtype was significantly correlated with
the presence of oligodendrocytes; cells in the classical subtype,
on the other hand, tend to be correlated with the presence of
microglia.

Our complete map of cross-talk between tumor and myeloid
cells allowed us to identify some known and some novel po-
tential targets for promoting anticancer therapy enhancing the
immune response. Although a significant number of interac-
tions are specific to few patients, when collectively analyzed,
our findings show that the members of the interactions on the
malignant cells enrich common pathways from those on im-
mune cells. The ligand and receptor expressed on cancer cells
participate in pathways such as extracellular matrix remodel-
ing, cell chemotaxis, Notch signaling, axonogenesis, and gli-
ogenesis. Instead, receptors and ligands detected on myeloid
cells modulate biological processes such as leukocyte chemo-
taxis and migration, cell-cell adhesion, cytokine production,
myeloid cell differentiation, reactive oxygen species metabolic
processes, and regulation of vasculature development. This pat-
tern underlines a highly connected tumor–host communication
network in glioma, where many ligands and receptors can inter-
act on the same cell type.

We have also identified a subset of interactions that are
highly conserved across different patients and datasets in
paracrine mode, showing that TLR2 is specifically and exclu-
sively upregulated in glioma-associated microglia; in contrast,
astrocytes and glioma cells expressed only low levels of TLR2.
It is known that versican is a glioma-derived endogenous TLR2
mediator that regulates microglial MT1-MMP expression for tu-
mor expansion [45]. Microglial upregulation can be abolished
by targeting TLR2, with potential therapeutic benefits in glioma
progression [43]. Our results confirm that TLR2 is a candidate
for adjuvant therapy in the treatment of glioma [64]. We also de-
scribed the interaction between EGFR and HBEGF: the feedback
loop between these 2 genes regulates astrocytes’ maturation [65]
and promotes gliomagenesis in specific contexts; the silencing
of 1 of the partners tends to reduce tumor growth and increases
survival in vivo [66]. Another common interaction across several
patients includes the pair MIF-CD74. Although MIF is a proin-
flammatory cytokine, it also exerts immunosuppressive func-

tions, influencing the M1/M2 polarization of tumor-associated
macrophages [67]. In fact, recent studies have shown that the
MIF-CD74 binding activates a signaling pathway, resulting in M2
shift in microglial cells, macrophages, and dendritic cells [68].
The inhibition of MIF signaling on these cells restores the an-
titumor immune response, leading to a decrease in the expres-
sion of immunosuppressive factors and a reacquired capacity
in cytotoxic T-cell activation [69]. In addition, the CD74 recep-
tor after activation is quickly internalized and recycles; there-
fore, it constitutes an attractive target for anticancer antibody-
based treatment strategies. We reported the L–R interaction in-
cluding THY1 (CD90) and ITGAM/ITGB2 (MAC-1, CD11B/CD18),
involved in leukocyte recruitment in response to inflammatory
signals (46% of patients). CD90 is a specific surface marker highly
expressed in glioma-associated mesenchymal stem cells [70]
and drives glioma progression through SRC-dependent mech-
anisms increasing proliferation, migration, and adhesion [71].
On the other hand, the CD11B/CD18 integrins complex is abun-
dantly expressed on the monocyte/macrophages surface, where
it is involved in critical adhesive reactions including the re-
cruitment of myeloid cells to the tumor site [72]. Moreover,
CD11B is a negative regulator of immune suppression, repre-
senting an interesting target for cancer immunotherapy [73]. In
fact, CD11B activation promotes pro-inflammatory macrophage
polarization, while its inhibition leads to immune-suppressive
macrophage polarization, vascular maturation, and accelerated
tumor growth.

When we applied our algorithm in autocrine mode, we found
some common interactions shared by all patients of our cohort.
RPS19, for example, is an abundant intracellular protein that is
expressed by virtually all cells in the body, and its extracellular
functions, including interaction with C5AR1, are activated upon
its release from dying cells [74]. The importance of C5AR1–RPS19
interaction for immunosuppression was recently demonstrated,
showing that the downregulation of RPS19 in tumor cells or phar-
macological blockade of C5AR1 by C5ARA reduced this immuno-
suppression and led to the generation of tumor-specific T-cell
responses and slower tumor growth in breast and ovarian can-
cer cells [50]. We have shown that the C5AR1–RPS19 interaction
is among the most common signaling cross-talk between tumor
cells and their microenvironment across multiple patients, mak-
ing these molecules an interesting target for therapeutic strate-
gies.

Our analysis confirmed that proneural GBMs are significantly
infiltrated by oligodendrocytes. MDK resulted in 1 of the top
possible mediators of the interaction between glioma cells and
oligodendrocytes through its ligand LRP2. The oncogenic role of
MDK, promoting proliferation and pharmacological resistance
in glioma, may involve the release of Sonic Hedgehog (SHH) from
LRP2 sequestration in oligodendrocytes [75], thus functioning to
activate one of the best-known activators of proliferation and
stemness of brain tumors [76]. The single-cell characterization
of proneural glioma evidenced that the concurrent expression
of high levels of the PDGFA ligand by the abundant oligodendro-
cytes infiltrating PDGFRA-amplified proneural GBM provide the
crucial initiating signaling event for the effects that this pathway
has for proliferation, stemness, and progression of brain tumors
[77].

Recent trials have shown that endogenous T cells play a sig-
nificant role in the prolonged survival time of patients with
glioma [2, 78]. However, GBM-induced immune suppression is
a major obstacle to an effective and durable immune-mediated
antitumor response. We have shown that a significant number
of patients with glioma present subpopulations of CD8+ T cells.
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10 A map of tumor–host interactions in glioma at single-cell resolution

The presence and T-cell clonal diversity in the tumor microen-
vironment has also been associated with response to immune
therapy in glioma [79]. Our analysis reported that this mecha-
nism of tumor suppression could be mediated by CADM1 and
its receptor CRTAM. Typically, CADM1 performs its antitumor ac-
tivity ensuring that cells grow in organized layers, inhibiting un-
controlled growth. Moreover, NECL-2 binds NK and CD8+ T cells
through a receptor known as class I-restricted T-cell–associated
molecule (CRTAM), which is expressed only on activated cells
[58]. The interaction among CRTAM and NECL-2 promotes cyto-
toxicity of NK cells and interferon γ (IFN-γ ) secretion of CD8+ T
cells in vitro [80].

Methods
Immune cell type classification

To evaluate the enrichment of each immune cell type in glioma
samples we used the collection of 295 signatures and the
Normalized Enrichment Score (NES) of the Mann-Whitney-
Wilcoxon gene set test (mww-GST) that we previously described
[39]. Briefly, NES is an estimate of the probability that the expres-
sion of a gene in the gene set is greater than the expression of a
gene outside this set:

NES = 1 − U
mn

,

where m is the number of genes in a gene set, n is the number of
those outside the gene set, U = mn + m(m+ 1) − T , and T is the
sum of the ranks of the genes in the gene set. We applied single-
cell mww-GST and classified each cell according to the signature
with the highest NES and corrected P < 0.01.

scTHI scores

The scTHI scores are computed between pairs of clusters of sin-
gle cells, assigning a score to each interaction of the table. A
typical example is when we have 1 cluster from the microenvi-
ronment (e.g., macrophages) and 1 cluster from the tumor cells.
Given a single-cell profile G, ranked from the high-expressed to
the low-expressed genes, we call GT the set of genes in the top
of the ranked profile (in all the reported experiments we use the
top 20%; the accompanying code allows the threshold to be se-
lected). Let the 2 clusters also be called A and B, then for every
L–R pair of the interaction table we compute the following score:

s(L , R) = 1
2

[
1

|A|
∑

G∈A
IGT (L ) · IGT (R) + 1

|B|
∑

G∈B
IGT (R) · IGT (L )

]
,

where I is the indicator function

IX(y) =
{

1 if y ∈ X
0 otherwise

Briefly, the score s is the average between 2 percentages: the
percentage of cells in cluster A where the gene L is at the top
of the ranked list and gene R is not at the top and vice versa for
cluster B in the second percentage; it tends to give a higher score
to paracrine interactions (in order to also score autocrine inter-
actions the second term in the product of the 2 summations in
the equation can be removed). A null distribution of the interac-
tion score to assign significance is then obtained by a bootstrap
procedure, shuffling the input data.

Significance of recurrent interactions among patients

We use the binomial test to quantify the significance of the ob-
served recurrent interaction among patients. To estimate the p
parameter of the binomial distribution under the null hypothe-
sis, for each cell compartment (myeloid, oligodendrocyte, T lym-
phocyte), we first generated a synthetic patient with 1,000 cells,
500 from the clusters of malignant cells and 500 from the cluster
of non-malignant cells, and then generated 100 random L–R ta-
bles by shuffling the rows of the original interaction table. This
generates a set of random L–R pairs preserving the overall dis-
tribution of the expression of the genes involved in the interac-
tion. By applying scTHI to the synthetic patient and the random
interaction tables, we compute the expected number of active
interactions per patient in the null case. We then use this value
as the p parameter of the binomial test. It is worth mentioning
that we obtain exactly the same estimate (up to the fourth deci-
mal digit) if, on the contrary, we generate a synthetic interaction
table and sample on the patients’ profiles. For each interaction
described in the text we report its significance in Tables S4, S6,
S8, and S9.

Gene Ontology enrichment analysis

The GO category enrichments of ligand and receptor genes de-
tected by scTHI analysis were performed using clusterProfiler
[81]. Enriched GO terms were filtered using an adjusted P-value
cut-off of 0.0001.

Availability of Source Code and Requirements

Project name: single-cell Tumor Host Interaction
Project home page: https://bioconductor.org/packages/devel/bi
oc/html/scTHI.html
Operating system: Platform independent
Programming language: R
License: GPL-2
RRID:SCR 018918
BiotoolsID: scTHI

Availability of Supporting Data and Materials

Imputed matrices for malignant and non-malignant cells are
available in the GigaScience GigaDB database [82].

Additional Files

Figure S1. Examples of L–R pairs: mean expression vs ranks. (A)
t-SNE plot of tumor and myeloid cells in patient PJ017 colored
by phenotype (left). t-SNE plots of 3 different interaction pairs
(APP FPR2, BGN TLR4, MMP7 ERBB4) colored according to the ex-
pression value of each gene in patient PJ017 (right). (B) t-SNE plot
of tumor and myeloid cells in patient MGH42 colored by pheno-
type (left). t-SNE plots of 2 different complex interaction pairs
(THY1 ITGAX:ITGB2 and ITGB1:ITGA9 SPP1) colored according
to the expression value of each gene in patient MGH42 (right).
(C) t-SNE plot of interaction pairs occurring among tumor and
myeloid cells in patient MGH42. The interaction between IL13
and IL13RA1 genes was detected in paracrine mode (left); the
interaction between CALR and LRP1 genes was detected in au-
tocrine mode (right). Cells are colored according to the expres-
sion value of each gene.
Figure S2. scTHI recovers validated interactions. The bar plots
show the top 15 significant interactions identified between
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(A) red-pulp and monocyte-derived macrophage cells, (B) red-
pulp macrophages and neutrophils, and (C) monocyte-derived
macrophages and neutrophils. The interactions spatially re-
solved in [15] are pointed out with an arrow.
Figure S3. Association between immune cell types and glioma
subtypes. Heat map of correlation between the percentage of
cells classified in one of the glioma subtypes with the percent-
ages of non-tumor cell types. ∗P ≤ 0.05, ∗∗P ≤ 0.01.
Figure S4. Enriched GO categories of L–R pair. Network of the
most represented biological process category enriched by L–R
partners on tumor (A) and on myeloid cells (B).
Figure S5. Specific and shared paracrine tumor–myeloid cell
interactions among datasets. Dot plots showing the signifi-
cant paracrine L–R interactions occurring between tumor and
myeloid cells per dataset. (A) Interaction pairs in which the lig-
and is expressed on tumor cells and the receptor on myeloid
cells. (B) Interaction pairs in which the ligand is expressed on
myeloid cells and the receptor on tumor cells.
Figure S6. RPS19–C5AR1 interaction. t-SNE plots of tumor and
non-tumor cells for each dataset analyzed. (A) Each cell is col-
ored by patient (right, non-tumor and left, tumor cells). (B) Each
cell is colored according to expression value of the genes RPS19
and C5AR1 in tumor and non-tumor cells, respectively. (C) t-SNE
plot of non-tumor cells colored according to cell type classifica-
tion.
Figure S7. Paracrine tumor–oligodendrocyte cell interactions.
Bar plots show significant paracrine L–R interactions (P ≤ 0.05
and scTHI score ≥ 0.50) occurring between tumor and oligoden-
drocyte cells shared in ≥4 patients. On the x axis are shown the
number of patients in which each interaction occurred. (A) In-
teraction pairs in which the ligand is expressed on tumor cells
and the receptor on oligodendrocyte cells. (B) Interaction pairs in
which the ligand is expressed on oligodendrocyte cells and the
receptor on tumor cells. (C) Interaction pairs as in (A) for each
dataset. (D) Interaction pairs as in (B) for each dataset.
Figure S8. Paracrine tumor–CD8 cell interactions. Bar plots show
significant paracrine L–R interactions (P ≤ 0.05 and scTHI score
≥ 0.50) occurring between tumor and CD8 cells shared in ≥3 pa-
tients. On the x axis the number of patients in which each inter-
action occurred is shown. (A) Interaction pairs in which the lig-
and is expressed on tumor cells and the receptor on CD8 cells. (B)
Interaction pairs in which the ligand is expressed on CD8 cells
and the receptor on tumor cells. (C) Interaction pairs as in (A) for
each dataset. (D) Interaction pairs as in (B) for each dataset. (E)
CADM1-CRTAM interaction: each cell is colored by patient (right,
non-tumor and left, tumor cells). (F) As in (E) where each cell is
colored according to expression value of the genes CADM1 and
CRTAM in tumor and non-tumor cells, respectively. (F) t-SNE plot
of non-tumor cells colored according to cell type classification.
Figure S9. Paracrine myeloid–CD8 cell interactions. Bar plots
show significant paracrine L–R interactions (P ≤ 0.05 and scTHI
score ≥ 0.50) occurring between myeloid and CD8 cells shared in
≥3 patients. On the x axis the number of patients in which each
interaction occurred is shown. (A) Interaction pairs in which the
ligand is expressed on myeloid cells and the receptor on CD8
cells. (B) Interaction pairs in which the ligand is expressed on
CD8 cells and the receptor on myeloid cells. (C) Interaction pairs
as in (A) for each dataset. (D) Interaction pairs as in (B) for each
dataset.
Figure S10. A map of tumor–host interactions in glioma. Chord
diagram of paracrine tumor–host interaction detected by scTHI.
The color of the arcs indicates the clusters of cells among which
the interaction has been identified. The origin of the arc indi-

cates that the ligand or receptor is expressed on the tumor, while
the arrow of the arc indicates that the ligand or receptor is ex-
pressed on the cells of the microenvironment.
Table S1. Ligand–receptor interactions. List of ligand–receptor
interaction pairs provided in scTHI.
Table S2. Signatures. List of immune system and tissue cell type
signatures provided in scTHI.
Table S3. Non-tumor cell classification. Phenotype classification
of tumor microenvironment cells in glioma datasets performed
by TME.classification function provided by scTHI. The second
sheet reports the breakdown for each dataset.
Table S4. Tumor–myeloid cell interactions. List of significant
paracrine and autocrine L–R interactions occurring between tu-
mor and myeloid cells from considered datasets detected by sc-
THI.
Table S5. Enriched GO categories of L–R partners in tumor and
myeloid cells. List of significant enriched GO biological processes
of ligand and receptor genes expressed in tumor and myeloid
cells, respectively.
Table S6. Tumor–oligodendrocyte cell interactions. List of sig-
nificant paracrine and autocrine L–R interactions occurring
between tumor and oligodendrocyte cells from considered
datasets detected by scTHI.
Table S7. Enriched GO categories of L–R partners in tumor and
oligodendrocyte cells. List of significant enriched GO biological
processes of ligand and receptor genes expressed in tumor and
oligodendrocyte cells, respectively.
Table S8. Tumor–CD8 cell interactions. List of significant
paracrine and autocrine L–R interactions occurring between tu-
mor and CD8 T cells detected by scTHI.
Table S9. Myeloid–CD8 cell interactions. List of significant
paracrine and autocrine L–R interactions occurring between
myeloid and CD8 T cells detected by scTHI.
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